Intrinsic Ultracontractivity for Schrödinger Operators Based on Fractional Laplacians

被引:0
|
作者
Kamil Kaleta
Tadeusz Kulczycki
机构
[1] Wrocław University of Technology,Institute of Mathematics and Computer Science
[2] Polish Academy of Sciences,Institute of Mathematics
来源
Potential Analysis | 2010年 / 33卷
关键词
Schrödinger operator; Fractional Laplacian; Intrinsic ultracontractivity; First eigenfunction; Primary 47D08; 60G52; Secondary 60J45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Feynman-Kac semigroup generated by the Schrödinger operator based on the fractional Laplacian − ( − Δ)α/2 − q in Rd, for q ≥ 0, α ∈ (0,2). We obtain sharp estimates of the first eigenfunction φ1 of the Schrödinger operator and conditions equivalent to intrinsic ultracontractivity of the Feynman-Kac semigroup. For potentials q such that lim|x| → ∞ q(x) = ∞ and comparable on unit balls we obtain that φ1(x) is comparable to (|x| + 1) − d − α (q(x) + 1) − 1 and intrinsic ultracontractivity holds iff lim|x| → ∞ q(x)/log|x| = ∞. Proofs are based on uniform estimates of q-harmonic functions.
引用
收藏
页码:313 / 339
页数:26
相关论文
共 50 条
  • [41] Characterization of intrinsic ultracontractivity for one dimensional Schrodinger operators
    Murata, Minoru
    Tsuchida, Tetsuo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (07) : 2194 - 2244
  • [42] Endpoint Properties of Localized Riesz Transforms and Fractional Integrals Associated to Schrödinger Operators
    Dachun Yang
    Dongyong Yang
    Yuan Zhou
    Potential Analysis, 2009, 30 : 271 - 300
  • [43] Path Laplacians versus fractional Laplacians as nonlocal operators on networks
    Estrada, Ernesto
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [44] A REPRESENTATION FORMULA RELATED TO SCHRDINGER OPERATORS
    Zheng Shijun (Louisiana State University
    Analysis in Theory and Applications, 2004, (03) : 294 - 296
  • [45] On the finiteness of the Morse index for Schrödinger operators
    Baptiste Devyver
    Manuscripta Mathematica, 2012, 139 : 249 - 271
  • [46] On the Essential Spectrum of Schrödinger Operators on Trees
    Jonathan Breuer
    Sergey Denisov
    Latif Eliaz
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [47] On Spectral Problems of Discrete Schrödinger Operators
    Chi-Hua Chan
    Po-Chun Huang
    Applications of Mathematics, 2021, 66 : 325 - 344
  • [48] On Minimal Eigenvalues¶of Schrödinger Operators on Manifolds
    Pedro Freitas
    Communications in Mathematical Physics, 2001, 217 : 375 - 382
  • [49] Trace Formulas for Schrödinger Operators on a Lattice
    E. L. Korotyaev
    Russian Journal of Mathematical Physics, 2022, 29 : 542 - 557
  • [50] On the Inverse Resonance Problem for Schrödinger Operators
    Marco Marlettta
    Roman Shterenberg
    Rudi Weikard
    Communications in Mathematical Physics, 2010, 295 : 465 - 484