Resonance Theory for Schrödinger Operators

被引:0
|
作者
O. Costin
A. Soffer
机构
[1] Department of Mathematics,
[2] Rutgers University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Resonances which result from perturbation of embedded eigenvalues are studied by time dependent methods. A general theory is developed, with new and weaker conditions, allowing for perturbations of threshold eigenvalues and relaxed Fermi Golden rule. The exponential decay rate of resonances is addressed; its uniqueness in the time dependent picture is shown in certain cases. The relation to the existence of meromorphic continuation of the properly weighted Green–s function to time dependent resonance is further elucidated, by giving an equivalent time dependent asymptotic expansion of the solutions of the Schrödinger equation.
引用
收藏
页码:133 / 152
页数:19
相关论文
共 50 条
  • [1] On the Inverse Resonance Problem for Schrödinger Operators
    Marco Marlettta
    Roman Shterenberg
    Rudi Weikard
    [J]. Communications in Mathematical Physics, 2010, 295 : 465 - 484
  • [2] Spectral Theory of Semibounded Schrödinger Operators with δ′-Interactions
    Aleksey Kostenko
    Mark Malamud
    [J]. Annales Henri Poincaré, 2014, 15 : 501 - 541
  • [3] KAM theory in momentum space and quasiperiodic Schrödinger operators
    Albanese, Claudio
    [J]. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1993, 10 (01): : 1 - 97
  • [4] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [5] Pseudomodes of Schrödinger operators
    Krejčiřík, David
    Siegl, Petr
    [J]. Frontiers in Physics, 2024, 12
  • [6] Spectral Theory for Periodic Schrödinger Operators with Reflection Symmetries
    B. Helffer
    T. Hoffmann-Ostenhof
    [J]. Communications in Mathematical Physics, 2003, 242 : 501 - 529
  • [7] Some Aspects of Theory of Schr?dinger Operators on Riemannian Manifold
    Diyab, Farah
    Reddy, B. Surender
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (05): : 1475 - 1487
  • [8] Inverse Scattering Theory for Discrete Schrödinger Operators on the Hexagonal Lattice
    Kazunori Ando
    [J]. Annales Henri Poincaré, 2013, 14 : 347 - 383
  • [9] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    [J]. Journal of Fourier Analysis and Applications, 2022, 28
  • [10] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    [J]. Letters in Mathematical Physics, 2012, 101 : 49 - 84