Resonance Theory for Schrödinger Operators

被引:0
|
作者
O. Costin
A. Soffer
机构
[1] Department of Mathematics,
[2] Rutgers University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Resonances which result from perturbation of embedded eigenvalues are studied by time dependent methods. A general theory is developed, with new and weaker conditions, allowing for perturbations of threshold eigenvalues and relaxed Fermi Golden rule. The exponential decay rate of resonances is addressed; its uniqueness in the time dependent picture is shown in certain cases. The relation to the existence of meromorphic continuation of the properly weighted Green–s function to time dependent resonance is further elucidated, by giving an equivalent time dependent asymptotic expansion of the solutions of the Schrödinger equation.
引用
收藏
页码:133 / 152
页数:19
相关论文
共 50 条
  • [41] An Agmon estimate for Schrödinger operators on graphs
    Stefan Steinerberger
    Letters in Mathematical Physics, 2023, 113
  • [42] Dispersion for Schrödinger operators on regular trees
    Kaïs Ammari
    Mostafa Sabri
    Analysis and Mathematical Physics, 2022, 12
  • [43] Schrödinger Operators with Distributional Matrix Potentials
    V. N. Moliboga
    Ukrainian Mathematical Journal, 2015, 67 : 748 - 763
  • [44] Riesz Transforms of Schrödinger Operators on Manifolds
    Joyce Assaad
    El Maati Ouhabaz
    Journal of Geometric Analysis, 2012, 22 : 1108 - 1136
  • [45] Hierarchical Schrödinger Operators with Singular Potentials
    Alexander Bendikov
    Alexander Grigor’yan
    Stanislav Molchanov
    Proceedings of the Steklov Institute of Mathematics, 2023, 323 : 12 - 46
  • [46] Spectral Multipliers for Magnetic Schrödinger Operators
    Zheng S.
    La Matematica, 2024, 3 (3): : 907 - 940
  • [47] Spectral asymptotics for generalized Schrödinger operators
    Do, Tan Duc
    Truong, Le Xuan
    ANNALES FENNICI MATHEMATICI, 2023, 48 (02): : 703 - 727
  • [48] On Radial Schrödinger Operators with a Coulomb Potential
    Jan Dereziński
    Serge Richard
    Annales Henri Poincaré, 2018, 19 : 2869 - 2917
  • [49] Schrödinger Operators with Rapidly Oscillating Potentials
    Itaru Sasaki
    Integral Equations and Operator Theory, 2007, 58 : 563 - 571
  • [50] Scattering for Schrödinger operators with conical decay
    Black, Adam
    Malinovitch, Tal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (07)