Spectral asymptotics for generalized Schrödinger operators

被引:0
|
作者
Do, Tan Duc [1 ]
Truong, Le Xuan [1 ]
机构
[1] Univ Econ Ho Chi Minh City, Ho Chi Minh City, Vietnam
来源
ANNALES FENNICI MATHEMATICI | 2023年 / 48卷 / 02期
关键词
Generalized Schrodinger operator; generalized Poincare inequality; weighted Young convolution inequality; eigenvalue asymptotic; exponential decay; NONCLASSICAL EIGENVALUE ASYMPTOTICS; SCHRODINGER-OPERATORS; EXPONENTIAL DECAY; EIGENFUNCTIONS; INEQUALITIES;
D O I
10.54330/afm.140863
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d is an element of {3, 4, 5, ...}. Consider L = - 1/omega div(A del u) + mu over its maximal domain in L-w(2)(R-d). Under certain conditions on the weight w, the coefficient matrix A and the positive Radon measure mu we obtain upper and lower bounds on N(lambda, L)-the number of eigenvalues of L that are at most lambda >= 1. Furthermore we show that the eigenfunctions of L corresponding to those eigenvalues are exponentially decaying. In the course of proofs, we develop generalized Poincare and weighted Young convolution inequalities as the main tools for the analysis.
引用
收藏
页码:703 / 727
页数:25
相关论文
共 50 条
  • [1] Spectral Asymptotics for Perturbed Spherical Schrödinger Operators and Applications to Quantum Scattering
    Aleksey Kostenko
    Gerald Teschl
    [J]. Communications in Mathematical Physics, 2013, 322 : 255 - 275
  • [2] Schrödinger Operators with Sparse Potentials: Asymptotics of the Fourier Transform¶of the Spectral Measure
    Denis Krutikov
    Christian Remling
    [J]. Communications in Mathematical Physics, 2001, 223 : 509 - 532
  • [3] Spectral Approximation of Generalized Schrödinger Operators via Approximation of Subwords
    Gabel, Fabian
    Gallaun, Dennis
    Grossmann, Julian
    Lindner, Marko
    Ukena, Riko
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (01)
  • [4] Spectral Approximation of Generalized Schrödinger Operators via Approximation of Subwords
    Fabian Gabel
    Dennis Gallaun
    Julian Grossmann
    Marko Lindner
    Riko Ukena
    [J]. Complex Analysis and Operator Theory, 2024, 18
  • [5] Bilinear operators associated with generalized Schrödinger operators
    Nan Hu
    Yu Liu
    [J]. Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 837 - 854
  • [6] On Spectral Problems of Discrete Schrödinger Operators
    Chi-Hua Chan
    Po-Chun Huang
    [J]. Applications of Mathematics, 2021, 66 : 325 - 344
  • [7] Spectral instability for some Schrödinger operators
    A. Aslanyan
    E.B. Davies
    [J]. Numerische Mathematik, 2000, 85 : 525 - 552
  • [8] Spectral Multipliers for Magnetic Schrödinger Operators
    Shijun Zheng
    [J]. La Matematica, 2024, 3 (3): : 907 - 940
  • [9] Inverse Spectral Problems for Schrödinger Operators
    Hamid Hezari
    [J]. Communications in Mathematical Physics, 2009, 288 : 1061 - 1088
  • [10] Asymptotics for Christoffel functions associated to continuum Schrödinger operators
    Eichinger, Benjamin
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (02): : 519 - 553