On the generalized multiway cut in trees problem

被引:0
|
作者
Hong Liu
Peng Zhang
机构
[1] Shandong University,School of Computer Science and Technology
来源
关键词
Internal Vertex; Dynamic Programming Approach; Input Tree; Greedy Approach; Problem Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
Given a tree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = (V, E)$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices and a collection of terminal sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{S_1, S_2, \ldots , S_c\}$$\end{document}, where each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} is a subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} is a constant, the generalized multiway cut in trees problem (GMWC(T)) asks to find a minimum size edge subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\prime } \subseteq E$$\end{document} such that its removal from the tree separates all terminals in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} from each other for each terminal set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document}. The GMWC(T) problem is a natural generalization of the classical multiway cut in trees problem, and has an implicit relation to the Densest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 + 2^k)$$\end{document} time algorithm, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths.We also discuss some heuristics for the GMWC(T) problem
引用
下载
收藏
页码:65 / 77
页数:12
相关论文
共 50 条
  • [41] HEIGHT-BALANCED MULTIWAY TREES
    PAGLI, L
    INFORMATION SYSTEMS, 1979, 4 (03) : 227 - 234
  • [42] Colored Multiway Cuts in Trees of Rings
    Xin Xiao
    Li Shuguang
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 2, PROCEEDINGS, 2009, : 236 - +
  • [43] Classification trees with unbiased multiway splits
    Kim, H
    Loh, WY
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) : 589 - 604
  • [44] Approximating Decision Trees with Multiway Branches
    Chakaravarthy, Venkatesan T.
    Pandit, Vinayaka
    Roy, Sambuddha
    Sabharwal, Yogish
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 210 - 221
  • [45] Parameterized Tractability of Multiway Cut with Parity Constraints
    Lokshtanov, Daniel
    Ramanujan, M. S.
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 750 - 761
  • [46] ODD MULTIWAY CUT IN DIRECTED ACYCLIC GRAPHS
    Chandrasekaran, Karthekeyan
    Mnich, Matthias
    Mozaffari, Sahand
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1385 - 1408
  • [47] On Multiway Cut Parameterized Above Lower Bounds
    Cygan, Marek
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wojtaszczyk, Jakub Onufry
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2013, 5 (01)
  • [48] Planar Multiway Cut with Terminals on Few Faces
    Pandey, Sukanya
    van Leeuwen, Erik Jan
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2032 - 2062
  • [49] Testability of minimum balanced multiway cut densities
    Bolla, Marianna
    Koi, Tamas
    Kramli, Andras
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1019 - 1027
  • [50] The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample
    Barrett, Wayne
    Hall, H. Tracy
    Loewy, Raphael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (08) : 1147 - 1191