On the generalized multiway cut in trees problem

被引:0
|
作者
Hong Liu
Peng Zhang
机构
[1] Shandong University,School of Computer Science and Technology
来源
关键词
Internal Vertex; Dynamic Programming Approach; Input Tree; Greedy Approach; Problem Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
Given a tree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = (V, E)$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices and a collection of terminal sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{S_1, S_2, \ldots , S_c\}$$\end{document}, where each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} is a subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} is a constant, the generalized multiway cut in trees problem (GMWC(T)) asks to find a minimum size edge subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\prime } \subseteq E$$\end{document} such that its removal from the tree separates all terminals in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} from each other for each terminal set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document}. The GMWC(T) problem is a natural generalization of the classical multiway cut in trees problem, and has an implicit relation to the Densest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 + 2^k)$$\end{document} time algorithm, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths.We also discuss some heuristics for the GMWC(T) problem
引用
下载
收藏
页码:65 / 77
页数:12
相关论文
共 50 条
  • [21] SIMPLEX PARTITIONING VIA EXPONENTIAL CLOCKS AND THE MULTIWAY-CUT PROBLEM
    Buchbinder, Niv
    Naor, Joseph
    Schwartz, Roy
    SIAM JOURNAL ON COMPUTING, 2018, 47 (04) : 1463 - 1482
  • [22] Generalized cut trees for edge-connectivity
    Lo, On-Hei Solomon
    Schmidt, Jens M.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 165 : 47 - 67
  • [23] EFFICIENT ALGORITHMS FOR GENERALIZED CUT-TREES
    GUSFIELD, D
    NAOR, D
    NETWORKS, 1991, 21 (05) : 505 - 520
  • [24] Multiway iceberg cubing on trees
    Chou, PLH
    Zhang, XZ
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2005, 2005, 3806 : 620 - 622
  • [25] OPTIMAL MULTIWAY SPLIT TREES
    HUANG, SHS
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1987, 8 (01): : 146 - 156
  • [26] ON WEIGHTED MULTIWAY CUTS IN TREES
    ERDOS, PL
    SZEKELY, LA
    MATHEMATICAL PROGRAMMING, 1994, 65 (01) : 93 - 105
  • [27] Minimum multiway cuts in trees
    Erdos, PL
    Frank, A
    Szekely, L
    DISCRETE APPLIED MATHEMATICS, 1998, 87 (1-3) : 67 - 75
  • [28] Strategic Multiway Cut and Multicut Games
    Elliot Anshelevich
    Bugra Caskurlu
    Ameya Hate
    Theory of Computing Systems, 2013, 52 : 200 - 220
  • [29] Improving the Integrality Gap for Multiway Cut
    Berczi, Kristof
    Chandrasekaran, Karthekeyan
    Kiraly, Tamas
    Madan, Vivek
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2019, 2019, 11480 : 115 - 127
  • [30] Min-max multiway cut
    Svitkina, Z
    Tardos, É
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 207 - 218