On the generalized multiway cut in trees problem

被引:0
|
作者
Hong Liu
Peng Zhang
机构
[1] Shandong University,School of Computer Science and Technology
来源
关键词
Internal Vertex; Dynamic Programming Approach; Input Tree; Greedy Approach; Problem Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
Given a tree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = (V, E)$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices and a collection of terminal sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{S_1, S_2, \ldots , S_c\}$$\end{document}, where each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} is a subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} is a constant, the generalized multiway cut in trees problem (GMWC(T)) asks to find a minimum size edge subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\prime } \subseteq E$$\end{document} such that its removal from the tree separates all terminals in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} from each other for each terminal set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document}. The GMWC(T) problem is a natural generalization of the classical multiway cut in trees problem, and has an implicit relation to the Densest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 + 2^k)$$\end{document} time algorithm, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths.We also discuss some heuristics for the GMWC(T) problem
引用
下载
收藏
页码:65 / 77
页数:12
相关论文
共 50 条
  • [11] A local search approximation algorithm for the multiway cut problem
    Bloch-Hansen, Andrew
    Samei, Nasim
    Solis-Oba, Roberto
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 8 - 21
  • [12] Simplex Partitioning via Exponential Clocks and the Multiway Cut Problem
    Buchbinder, Niv
    Naor, Joseph
    Schwartz, Roy
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 535 - 544
  • [13] A 2-approximation algorithm for the directed multiway cut problem
    Naor, JS
    Zosin, L
    SIAM JOURNAL ON COMPUTING, 2001, 31 (02) : 477 - 482
  • [14] A 2-approximation algorithm for the directed multiway cut problem
    Naor, JS
    Zosin, L
    38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, : 548 - 553
  • [15] An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem
    Chen, Jianer
    Liu, Yang
    Lu, Songjian
    ALGORITHMICA, 2009, 55 (01) : 1 - 13
  • [16] An improved parameterized algorithm for the minimum node multiway cut problem
    Chen, Iianer
    Liu, Yang
    Lu, Songjian
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2007, 4619 : 495 - +
  • [17] An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem
    Jianer Chen
    Yang Liu
    Songjian Lu
    Algorithmica, 2009, 55 : 1 - 13
  • [18] ON THE MULTIWAY CUT POLYHEDRON
    CHOPRA, S
    RAO, MR
    NETWORKS, 1991, 21 (01) : 51 - 89
  • [19] THE MULTIWAY TREES OF HANOI
    JURGENSEN, H
    WOOD, D
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1983, 14 (02) : 137 - 153
  • [20] DENSE MULTIWAY TREES
    CULIK, K
    OTTMANN, T
    WOOD, D
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 1981, 6 (03): : 486 - 512