On the generalized multiway cut in trees problem

被引:0
|
作者
Hong Liu
Peng Zhang
机构
[1] Shandong University,School of Computer Science and Technology
来源
关键词
Internal Vertex; Dynamic Programming Approach; Input Tree; Greedy Approach; Problem Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
Given a tree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = (V, E)$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices and a collection of terminal sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{S_1, S_2, \ldots , S_c\}$$\end{document}, where each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} is a subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} is a constant, the generalized multiway cut in trees problem (GMWC(T)) asks to find a minimum size edge subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\prime } \subseteq E$$\end{document} such that its removal from the tree separates all terminals in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} from each other for each terminal set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document}. The GMWC(T) problem is a natural generalization of the classical multiway cut in trees problem, and has an implicit relation to the Densest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 + 2^k)$$\end{document} time algorithm, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths.We also discuss some heuristics for the GMWC(T) problem
引用
下载
收藏
页码:65 / 77
页数:12
相关论文
共 50 条
  • [31] Improving the integrality gap for multiway cut
    Berczi, Kristof
    Chandrasekaran, Karthekeyan
    Kiraly, Tamas
    Madan, Vivek
    MATHEMATICAL PROGRAMMING, 2020, 183 (1-2) : 171 - 193
  • [32] An improved approximation algorithm for multiway cut
    Calinescu, G
    Karloff, H
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2000, 60 (03) : 564 - 574
  • [33] Strategic Multiway Cut and Multicut Games
    Anshelevich, Elliot
    Caskurlu, Bugra
    Hate, Ameya
    APPROXIMATION AND ONLINE ALGORITHMS, 2011, 6534 : 1 - 12
  • [34] Strategic Multiway Cut and Multicut Games
    Anshelevich, Elliot
    Caskurlu, Bugra
    Hate, Ameya
    THEORY OF COMPUTING SYSTEMS, 2013, 52 (02) : 200 - 220
  • [35] Improving the integrality gap for multiway cut
    Kristóf Bérczi
    Karthekeyan Chandrasekaran
    Tamás Király
    Vivek Madan
    Mathematical Programming, 2020, 183 : 171 - 193
  • [36] lp-Norm Multiway Cut
    Chandrasekaran, Karthekeyan
    Wang, Weihang
    ALGORITHMICA, 2022, 84 (09) : 2667 - 2701
  • [37] Efficient multiway radix search trees
    Erlingsson, U
    Krishnamoorthy, M
    Raman, TV
    INFORMATION PROCESSING LETTERS, 1996, 60 (03) : 115 - 120
  • [38] OPTIMUM MULTIWAY SEARCH-TREES
    VAISHNAVI, VK
    KRIEGEL, HP
    WOOD, D
    ACTA INFORMATICA, 1980, 14 (02) : 119 - 133
  • [39] Efficient multiway radix search trees
    Rensselaer Polytechnic Inst, Troy, United States
    Inf Process Lett, 3 (115-120):
  • [40] A NOTE ON OPTIMAL MULTIWAY SPLIT TREES
    LIU, LT
    CHEN, GH
    WANG, YL
    BIT NUMERICAL MATHEMATICS, 1991, 31 (02) : 220 - 229