On the generalized multiway cut in trees problem

被引:0
|
作者
Hong Liu
Peng Zhang
机构
[1] Shandong University,School of Computer Science and Technology
来源
关键词
Internal Vertex; Dynamic Programming Approach; Input Tree; Greedy Approach; Problem Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
Given a tree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = (V, E)$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices and a collection of terminal sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{S_1, S_2, \ldots , S_c\}$$\end{document}, where each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} is a subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} is a constant, the generalized multiway cut in trees problem (GMWC(T)) asks to find a minimum size edge subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{\prime } \subseteq E$$\end{document} such that its removal from the tree separates all terminals in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} from each other for each terminal set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document}. The GMWC(T) problem is a natural generalization of the classical multiway cut in trees problem, and has an implicit relation to the Densest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 + 2^k)$$\end{document} time algorithm, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths.We also discuss some heuristics for the GMWC(T) problem
引用
收藏
页码:65 / 77
页数:12
相关论文
共 50 条
  • [1] On the generalized multiway cut in trees problem
    Liu, Hong
    Zhang, Peng
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 65 - 77
  • [2] OPTIMAL MULTIWAY GENERALIZED SPLIT TREES
    CHEN, GH
    LIU, LT
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1991, 41 (1-2) : 39 - 47
  • [3] Simplex Transformations and the Multiway Cut Problem
    Buchbinder, Niv
    Schwartz, Roy
    Weizman, Baruch
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2400 - 2410
  • [4] Simplex Transformations and the Multiway Cut Problem
    Buchbinder, Niv
    Schwartz, Roy
    Weizman, Baruch
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2021, 46 (02) : 757 - 771
  • [5] The multi-multiway cut problem
    Avidor, A
    Langberg, M
    [J]. ALGORITHM THEORY- SWAT 2004, 2004, 3111 : 273 - 284
  • [6] On a bidirected relaxation for the MULTIWAY CUT problem
    Chekuri, C
    Gupta, A
    Kumar, A
    [J]. DISCRETE APPLIED MATHEMATICS, 2005, 150 (1-3) : 67 - 79
  • [7] A simple algorithm for the multiway cut problem
    Buchbinder, Niv
    Schwartz, Roy
    Weizman, Baruch
    [J]. OPERATIONS RESEARCH LETTERS, 2019, 47 (06) : 587 - 593
  • [8] The multi-multiway cut problem
    Avidor, Adi
    Langberg, Michael
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 377 (1-3) : 35 - 42
  • [9] Generalized k-multiway cut problems
    Liu J.
    Peng Y.
    Zhao C.
    [J]. Journal of Applied Mathematics and Computing, 2006, 21 (1-2) : 69 - 82
  • [10] A simple algorithm for the planar multiway cut problem
    Yeh, WC
    [J]. JOURNAL OF ALGORITHMS, 2001, 39 (01) : 68 - 77