Local spatial log-Gaussian Cox processes for seismic data

被引:0
|
作者
Nicoletta D’Angelo
Marianna Siino
Antonino D’Alessandro
Giada Adelfio
机构
[1] Università degli Studi di Palermo,Dipartimento di Scienze Economiche, Aziendali e Statistiche
[2] Istituto Nazionale di Geofisica e Vulcanologia (INGV),undefined
来源
关键词
Log-Gaussian Cox process; Local composite likelihood; Spatial point processes; Palm likelihood; Seismology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of the covariance parameters of the Gaussian Random Field, that in this local version are allowed to vary in space, providing a more realistic description of the clustering feature of seismic events. Furthermore, we contribute to the framework of diagnostics, outlining suitable methods for the local context and proposing a new step-wise approach addressing the particular case of multiple covariates. Overall, we show that local models provide good inferential results and could serve as the basis for future spatio-temporal local model developments, peculiar for the description of the complex seismic phenomenon.
引用
收藏
页码:633 / 671
页数:38
相关论文
共 50 条
  • [21] A spatially discrete approximation to log-Gaussian Cox processes for modelling aggregated disease count data
    Johnson, Olatunji
    Diggle, Peter
    Giorgi, Emanuele
    STATISTICS IN MEDICINE, 2019, 38 (24) : 4871 - 4887
  • [22] Variable selection methods for Log-Gaussian Cox processes: A case-study on accident data
    Spychala, Cecile
    Dombry, Clement
    Goga, Camelia
    SPATIAL STATISTICS, 2024, 61
  • [23] Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes
    Waagepetersen, Rasmus
    Guan, Yongtao
    Jalilian, Abdollah
    Mateu, Jorge
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2016, 65 (01) : 77 - 96
  • [24] Fitting Log-Gaussian Cox Processes Using Generalized Additive Model Software
    Dovers, Elliot
    Stoklosa, Jakub
    Warton, David I.
    AMERICAN STATISTICIAN, 2024, 78 (04): : 418 - 425
  • [25] Going off grid: computationally efficient inference for log-Gaussian Cox processes
    Simpson, D.
    Illian, J. B.
    Lindgren, F.
    Sorbye, S. H.
    Rue, H.
    BIOMETRIKA, 2016, 103 (01) : 49 - 70
  • [26] LOG-GAUSSIAN COX PROCESS MODELING OF LARGE SPATIAL LIGHTNING DATA USING SPECTRAL AND LAPLACE APPROXIMATIONS
    Gelsinger, Megan L.
    Griffin, Maryclare
    Matteson, David
    Guinness, Joseph
    ANNALS OF APPLIED STATISTICS, 2023, 17 (03): : 2078 - 2094
  • [27] The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models
    Flagg, Kenneth
    Hoegh, Andrew
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (05) : 1128 - 1151
  • [28] Best unbiased prediction for Gaussian and log-Gaussian processes
    Cox, DD
    First Erich L. Lehmann Symposium - Optimality, 2004, 44 : 125 - 132
  • [29] Spatiotemporal prediction for log-Gaussian Cox processes (vol 63, pg 823, 2001)
    Brix, A
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 946 - 946
  • [30] Careful prior specification avoids incautious inference for log-Gaussian Cox point processes
    Sorbye, Sigrunn H.
    Illian, Janine B.
    Simpson, Daniel P.
    Burslem, David
    Rue, Havard
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (03) : 543 - 564