Going off grid: computationally efficient inference for log-Gaussian Cox processes

被引:118
|
作者
Simpson, D. [1 ]
Illian, J. B. [2 ]
Lindgren, F. [3 ]
Sorbye, S. H. [4 ]
Rue, H. [5 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[4] UiT Arctic Univ Norway, Dept Math & Stat, N-9037 Tromso, Norway
[5] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Approximation of Gaussian random fields; Gaussian Markov random field; Integrated nested Laplace approximation; Spatial point process; Stochastic partial differential equation; INVERSE PROBLEMS; APPROXIMATION; MODELS; DISTRIBUTIONS; DIVERSITY; PATTERNS; FIELDS;
D O I
10.1093/biomet/asv064
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces a new method for performing computational inference on log-Gaussian Cox processes. The likelihood is approximated directly by making use of a continuously specified Gaussian random field. We show that for sufficiently smooth Gaussian random field prior distributions, the approximation can converge with arbitrarily high order, whereas an approximation based on a counting process on a partition of the domain achieves only first-order convergence. The results improve upon the general theory of convergence for stochastic partial differential equation models introduced by Lindgren et al. (2011). The new method is demonstrated on a standard point pattern dataset, and two interesting extensions to the classical log-Gaussian Cox process framework are discussed. The first extension considers variable sampling effort throughout the observation window and implements the method of Chakraborty et al. (2011). The second extension constructs a log-Gaussian Cox process on the world's oceans. The analysis is performed using integrated nested Laplace approximation for fast approximate inference.
引用
收藏
页码:49 / 70
页数:22
相关论文
共 50 条
  • [1] Spatiotemporal prediction for log-Gaussian Cox processes
    Brix, A
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 823 - 841
  • [2] Careful prior specification avoids incautious inference for log-Gaussian Cox point processes
    Sorbye, Sigrunn H.
    Illian, Janine B.
    Simpson, Daniel P.
    Burslem, David
    Rue, Havard
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (03) : 543 - 564
  • [3] lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R
    Taylor, Benjamin M.
    Davies, Tilman M.
    Rowlingson, Barry
    Diggle, Peter J.
    JOURNAL OF STATISTICAL SOFTWARE, 2013, 52 (04):
  • [4] Local spatial log-Gaussian Cox processes for seismic data
    Nicoletta D’Angelo
    Marianna Siino
    Antonino D’Alessandro
    Giada Adelfio
    AStA Advances in Statistical Analysis, 2022, 106 : 633 - 671
  • [5] LOG-GAUSSIAN COX PROCESSES IN INFINITE-DIMENSIONAL SPACES
    Torres, A.
    Frias, M. P.
    Ruiz-Medina, M. D.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 95 : 157 - 177
  • [6] On new families of anisotropic spatial log-Gaussian Cox processes
    Nasirzadeh, Fariba
    Shishebor, Zohreh
    Mateu, Jorge
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (02) : 183 - 213
  • [7] On new families of anisotropic spatial log-Gaussian Cox processes
    Fariba Nasirzadeh
    Zohreh Shishebor
    Jorge Mateu
    Stochastic Environmental Research and Risk Assessment, 2021, 35 : 183 - 213
  • [8] Local spatial log-Gaussian Cox processes for seismic data
    D'Angelo, Nicoletta
    Siino, Marianna
    D'Alessandro, Antonino
    Adelfio, Giada
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2022, 106 (04) : 633 - 671
  • [9] Bayesian Variable Selection Methods for Log-Gaussian Cox Processes
    Pinto Junior, Jony Arrais
    da Silva, Patricia Viana
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, MAXENT 37, 2018, 239 : 101 - 110
  • [10] Visual textures as realizations of multivariate log-Gaussian Cox processes
    Huu-Giao Nguyen
    Fablet, Ronan
    Boucher, Jean-Marc
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,