Local spatial log-Gaussian Cox processes for seismic data

被引:0
|
作者
Nicoletta D’Angelo
Marianna Siino
Antonino D’Alessandro
Giada Adelfio
机构
[1] Università degli Studi di Palermo,Dipartimento di Scienze Economiche, Aziendali e Statistiche
[2] Istituto Nazionale di Geofisica e Vulcanologia (INGV),undefined
来源
关键词
Log-Gaussian Cox process; Local composite likelihood; Spatial point processes; Palm likelihood; Seismology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of the covariance parameters of the Gaussian Random Field, that in this local version are allowed to vary in space, providing a more realistic description of the clustering feature of seismic events. Furthermore, we contribute to the framework of diagnostics, outlining suitable methods for the local context and proposing a new step-wise approach addressing the particular case of multiple covariates. Overall, we show that local models provide good inferential results and could serve as the basis for future spatio-temporal local model developments, peculiar for the description of the complex seismic phenomenon.
引用
收藏
页码:633 / 671
页数:38
相关论文
共 50 条
  • [1] Local spatial log-Gaussian Cox processes for seismic data
    D'Angelo, Nicoletta
    Siino, Marianna
    D'Alessandro, Antonino
    Adelfio, Giada
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2022, 106 (04) : 633 - 671
  • [2] Correction to: Local spatial log-Gaussian Cox processes for seismic data
    Nicoletta D’Angelo
    Marianna Siino
    Antonino D’Alessandro
    Giada Adelfio
    AStA Advances in Statistical Analysis, 2023, 107 (4) : 815 - 819
  • [3] On new families of anisotropic spatial log-Gaussian Cox processes
    Nasirzadeh, Fariba
    Shishebor, Zohreh
    Mateu, Jorge
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (02) : 183 - 213
  • [4] On new families of anisotropic spatial log-Gaussian Cox processes
    Fariba Nasirzadeh
    Zohreh Shishebor
    Jorge Mateu
    Stochastic Environmental Research and Risk Assessment, 2021, 35 : 183 - 213
  • [5] Local spatial log-Gaussian Cox processes for seismic data (Apr, 10.1007/s10182-022-00444-w, 2022)
    D'Angelo, Nicoletta
    Siino, Marianna
    D'Alessandro, Antonino
    Adelfio, Giada
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (04) : 815 - 819
  • [6] Structural Complexity and Informational Transfer in Spatial Log-Gaussian Cox Processes
    Medialdea, Adriana
    Angulo, Jose Miguel
    Mateu, Jorge
    ENTROPY, 2021, 23 (09)
  • [7] Spatiotemporal prediction for log-Gaussian Cox processes
    Brix, A
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 823 - 841
  • [8] Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R
    Taylor, Benjamin M.
    Davies, Tilman M.
    Rowlingson, Barry S.
    Diggle, Peter J.
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 63 (07): : 1 - 48
  • [9] Modeling Skewed Spatial Data Using a Convolution of Gaussian and Log-Gaussian Processes
    Zareifard, Hamid
    Khaledi, Majid Jafari
    Rivaz, Firoozeh
    Vahidi-Asl, Mohammad Q.
    BAYESIAN ANALYSIS, 2018, 13 (02): : 531 - 557
  • [10] Spatial and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm
    Diggle, Peter J.
    Moraga, Paula
    Rowlingson, Barry
    Taylor, Benjamin M.
    STATISTICAL SCIENCE, 2013, 28 (04) : 542 - 563