Local spatial log-Gaussian Cox processes for seismic data

被引:0
|
作者
Nicoletta D’Angelo
Marianna Siino
Antonino D’Alessandro
Giada Adelfio
机构
[1] Università degli Studi di Palermo,Dipartimento di Scienze Economiche, Aziendali e Statistiche
[2] Istituto Nazionale di Geofisica e Vulcanologia (INGV),undefined
来源
关键词
Log-Gaussian Cox process; Local composite likelihood; Spatial point processes; Palm likelihood; Seismology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of the covariance parameters of the Gaussian Random Field, that in this local version are allowed to vary in space, providing a more realistic description of the clustering feature of seismic events. Furthermore, we contribute to the framework of diagnostics, outlining suitable methods for the local context and proposing a new step-wise approach addressing the particular case of multiple covariates. Overall, we show that local models provide good inferential results and could serve as the basis for future spatio-temporal local model developments, peculiar for the description of the complex seismic phenomenon.
引用
收藏
页码:633 / 671
页数:38
相关论文
共 50 条
  • [31] Spatiotemporal prediction for log-Gaussian Cox processes (vol 63, pg 823, 2001)
    Taylor, Benjamin M.
    Diggle, Peter J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 601 - 602
  • [32] Intercalibration of survey methods using paired fishing operations and log-Gaussian Cox processes
    Thygesen, Uffe Hogsbro
    Kristensen, Kasper
    Jansen, Teunis
    Beyer, Jan E.
    ICES JOURNAL OF MARINE SCIENCE, 2019, 76 (04) : 1189 - 1199
  • [33] Modeling spatial distribution of earthquake epicenters using inhomogeneous Log-Gaussian Cox point process
    Salma Anwar
    Muhammad Yaseen
    Muhammad Yaseen
    Yasir Latif
    Modeling Earth Systems and Environment, 2024, 10 : 2917 - 2933
  • [34] Log Gaussian Cox processes
    Moller, J
    Syversveen, AR
    Waagepetersen, RP
    SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 451 - 482
  • [35] Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes
    D'Angelo, Nicoletta
    Adelfio, Giada
    Mateu, Jorge
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 180
  • [36] Modeling spatial distribution of earthquake epicenters using inhomogeneous Log-Gaussian Cox point process
    Anwar, Salma
    Yaseen, Muhammad
    Yaseen, Muhammad
    Latif, Yasir
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (02) : 2917 - 2933
  • [37] Efficient inference for spatial extreme value processes associated to log-Gaussian random functions
    Wadsworth, Jennifer L.
    Tawn, Jonathan A.
    BIOMETRIKA, 2014, 101 (01) : 1 - 15
  • [38] Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes
    Siino, Marianna
    Adelfio, Giada
    Mateu, Jorge
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (12) : 3525 - 3539
  • [39] Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes
    Marianna Siino
    Giada Adelfio
    Jorge Mateu
    Stochastic Environmental Research and Risk Assessment, 2018, 32 : 3525 - 3539
  • [40] FAST METHODS FOR FITTING LOG-GAUSSIAN COX PROCESS MODELS IN ECOLOGY
    Dovers, Elliot
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (02) : 344 - 345