Local spatial log-Gaussian Cox processes for seismic data

被引:0
|
作者
Nicoletta D’Angelo
Marianna Siino
Antonino D’Alessandro
Giada Adelfio
机构
[1] Università degli Studi di Palermo,Dipartimento di Scienze Economiche, Aziendali e Statistiche
[2] Istituto Nazionale di Geofisica e Vulcanologia (INGV),undefined
来源
关键词
Log-Gaussian Cox process; Local composite likelihood; Spatial point processes; Palm likelihood; Seismology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of the covariance parameters of the Gaussian Random Field, that in this local version are allowed to vary in space, providing a more realistic description of the clustering feature of seismic events. Furthermore, we contribute to the framework of diagnostics, outlining suitable methods for the local context and proposing a new step-wise approach addressing the particular case of multiple covariates. Overall, we show that local models provide good inferential results and could serve as the basis for future spatio-temporal local model developments, peculiar for the description of the complex seismic phenomenon.
引用
收藏
页码:633 / 671
页数:38
相关论文
共 50 条
  • [41] Log Gaussian Cox processes on the sphere
    Cuevas-Pacheco, Francisco
    Moller, Jesper
    SPATIAL STATISTICS, 2018, 26 : 69 - 82
  • [42] Count-based change point detection via multi-output log-Gaussian Cox processes
    Bae, Joonho
    Park, Jinkyoo
    IISE TRANSACTIONS, 2020, 52 (09) : 998 - 1013
  • [43] Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: the case of Catalonia, 1994–2008
    Laura Serra
    Marc Saez
    Jorge Mateu
    Diego Varga
    Pablo Juan
    Carlos Díaz-Ávalos
    Håvard Rue
    Environmental and Ecological Statistics, 2014, 21 : 531 - 563
  • [44] A LOG-GAUSSIAN COX PROCESS WITH SEQUENTIAL MONTE CARLO FOR LINE NARROWING IN SPECTROSCOPY
    Harkonen, Teemu
    Hannula, Emma
    Moores, Matthew T.
    Vartiainen, Erik M.
    Roininen, Lassi
    FOUNDATIONS OF DATA SCIENCE, 2023, : 503 - 519
  • [45] An updated landslide susceptibility model and a log-Gaussian Cox process extension for Scotland
    Bryce, Erin
    Castro-Camilo, Daniela
    Dashwood, Claire
    Tanyas, Hakan
    Ciurean, Roxana
    Novellino, Alessandro
    Lombardo, Luigi
    LANDSLIDES, 2025, 22 (02) : 517 - 535
  • [46] Log Gaussian Cox processes and spatially aggregated disease incidence data
    Li, Ye
    Brown, Patrick
    Gesink, Dionne C.
    Rue, Havard
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2012, 21 (05) : 479 - 507
  • [47] stelfi: An R package for fitting Hawkes and log-Gaussian Cox point process models
    Jones-Todd, Charlotte M.
    van Helsdingen, Alec B. M.
    ECOLOGY AND EVOLUTION, 2024, 14 (02):
  • [48] Active learning-assisted neutron spectroscopy with log-Gaussian processes
    Teixeira Parente, Mario
    Brandl, Georg
    Franz, Christian
    Stuhr, Uwe
    Ganeva, Marina
    Schneidewind, Astrid
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [49] Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: the case of Catalonia, 1994-2008
    Serra, Laura
    Saez, Marc
    Mateu, Jorge
    Varga, Diego
    Juan, Pablo
    Diaz-Avalos, Carlos
    Rue, Havard
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 531 - 563
  • [50] Palm Distributions for Log Gaussian Cox Processes
    Coeurjolly, Jean-Francois
    Moller, Jesper
    Waagepetersen, Rasmus
    SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (01) : 192 - 203