Going off grid: computationally efficient inference for log-Gaussian Cox processes

被引:118
|
作者
Simpson, D. [1 ]
Illian, J. B. [2 ]
Lindgren, F. [3 ]
Sorbye, S. H. [4 ]
Rue, H. [5 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[4] UiT Arctic Univ Norway, Dept Math & Stat, N-9037 Tromso, Norway
[5] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Approximation of Gaussian random fields; Gaussian Markov random field; Integrated nested Laplace approximation; Spatial point process; Stochastic partial differential equation; INVERSE PROBLEMS; APPROXIMATION; MODELS; DISTRIBUTIONS; DIVERSITY; PATTERNS; FIELDS;
D O I
10.1093/biomet/asv064
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces a new method for performing computational inference on log-Gaussian Cox processes. The likelihood is approximated directly by making use of a continuously specified Gaussian random field. We show that for sufficiently smooth Gaussian random field prior distributions, the approximation can converge with arbitrarily high order, whereas an approximation based on a counting process on a partition of the domain achieves only first-order convergence. The results improve upon the general theory of convergence for stochastic partial differential equation models introduced by Lindgren et al. (2011). The new method is demonstrated on a standard point pattern dataset, and two interesting extensions to the classical log-Gaussian Cox process framework are discussed. The first extension considers variable sampling effort throughout the observation window and implements the method of Chakraborty et al. (2011). The second extension constructs a log-Gaussian Cox process on the world's oceans. The analysis is performed using integrated nested Laplace approximation for fast approximate inference.
引用
收藏
页码:49 / 70
页数:22
相关论文
共 50 条
  • [41] An updated landslide susceptibility model and a log-Gaussian Cox process extension for Scotland
    Bryce, Erin
    Castro-Camilo, Daniela
    Dashwood, Claire
    Tanyas, Hakan
    Ciurean, Roxana
    Novellino, Alessandro
    Lombardo, Luigi
    LANDSLIDES, 2025, 22 (02) : 517 - 535
  • [42] stelfi: An R package for fitting Hawkes and log-Gaussian Cox point process models
    Jones-Todd, Charlotte M.
    van Helsdingen, Alec B. M.
    ECOLOGY AND EVOLUTION, 2024, 14 (02):
  • [43] The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models
    Flagg, Kenneth
    Hoegh, Andrew
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (05) : 1128 - 1151
  • [44] Active learning-assisted neutron spectroscopy with log-Gaussian processes
    Teixeira Parente, Mario
    Brandl, Georg
    Franz, Christian
    Stuhr, Uwe
    Ganeva, Marina
    Schneidewind, Astrid
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [45] Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: the case of Catalonia, 1994-2008
    Serra, Laura
    Saez, Marc
    Mateu, Jorge
    Varga, Diego
    Juan, Pablo
    Diaz-Avalos, Carlos
    Rue, Havard
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 531 - 563
  • [46] Palm Distributions for Log Gaussian Cox Processes
    Coeurjolly, Jean-Francois
    Moller, Jesper
    Waagepetersen, Rasmus
    SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (01) : 192 - 203
  • [47] Active learning-assisted neutron spectroscopy with log-Gaussian processes
    Mario Teixeira Parente
    Georg Brandl
    Christian Franz
    Uwe Stuhr
    Marina Ganeva
    Astrid Schneidewind
    Nature Communications, 14
  • [48] MULTIVARIATE LOG-GAUSSIAN COX MODELS OF ELEMENTARY SHAPES FOR RECOGNIZING NATURAL SCENE CATEGORIES
    Huu-Giao Nguyen
    Fablet, Ronan
    Boucher, Jean-Marc
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 665 - 668
  • [49] Second-order semi-parametric inference for multivariate log Gaussian Cox processes
    Hessellund, Kristian Bjorn
    Xu, Ganggang
    Guan, Yongtao
    Waagepetersen, Rasmus
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2022, 71 (01) : 244 - 268
  • [50] Quick inference for log Gaussian Cox processes with non-stationary underlying random fields
    Dvorak, Jiri
    Moller, Jesper
    Mrkvicka, Tomas
    Soubeyrand, Samuel
    SPATIAL STATISTICS, 2019, 33