MULTIVARIATE LOG-GAUSSIAN COX MODELS OF ELEMENTARY SHAPES FOR RECOGNIZING NATURAL SCENE CATEGORIES

被引:0
|
作者
Huu-Giao Nguyen [1 ]
Fablet, Ronan
Boucher, Jean-Marc [2 ]
机构
[1] Telecom Bretagne, Inst Telecom, LabSTICC, CS 83818, F-29238 Brest 3, France
[2] Univ Europe Bretagne, Bretagne, France
关键词
log-Gaussian Cox process; topographic map; inner-distance shape context; scene recognition;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we address invariant scene classification from images We propose a novel descriptor based on the statistical characterization of the spatial patterns formed by elementary objects in images Elementary objects are defined from a tree of shapes of the topology map of the image and each object is characterized by shape context feature vector. Viewing the set of elementary objects as a realization of a random spatial process, we investigate a statistical analysis using log-Gaussian Cox model to define an invariant image descriptor. An application to natural scene recognition is described. Reported results validate the proposed descriptor with respect to previous work.
引用
收藏
页码:665 / 668
页数:4
相关论文
共 50 条
  • [1] Visual textures as realizations of multivariate log-Gaussian Cox processes
    Huu-Giao Nguyen
    Fablet, Ronan
    Boucher, Jean-Marc
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [2] Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes
    Waagepetersen, Rasmus
    Guan, Yongtao
    Jalilian, Abdollah
    Mateu, Jorge
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2016, 65 (01) : 77 - 96
  • [3] FAST METHODS FOR FITTING LOG-GAUSSIAN COX PROCESS MODELS IN ECOLOGY
    Dovers, Elliot
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (02) : 344 - 345
  • [4] Spatiotemporal prediction for log-Gaussian Cox processes
    Brix, A
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 823 - 841
  • [5] stelfi: An R package for fitting Hawkes and log-Gaussian Cox point process models
    Jones-Todd, Charlotte M.
    van Helsdingen, Alec B. M.
    ECOLOGY AND EVOLUTION, 2024, 14 (02):
  • [6] The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models
    Flagg, Kenneth
    Hoegh, Andrew
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (05) : 1128 - 1151
  • [7] Local spatial log-Gaussian Cox processes for seismic data
    Nicoletta D’Angelo
    Marianna Siino
    Antonino D’Alessandro
    Giada Adelfio
    AStA Advances in Statistical Analysis, 2022, 106 : 633 - 671
  • [8] LOG-GAUSSIAN COX PROCESSES IN INFINITE-DIMENSIONAL SPACES
    Torres, A.
    Frias, M. P.
    Ruiz-Medina, M. D.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 95 : 157 - 177
  • [9] Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R
    Taylor, Benjamin M.
    Davies, Tilman M.
    Rowlingson, Barry S.
    Diggle, Peter J.
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 63 (07): : 1 - 48
  • [10] On new families of anisotropic spatial log-Gaussian Cox processes
    Nasirzadeh, Fariba
    Shishebor, Zohreh
    Mateu, Jorge
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (02) : 183 - 213