Going off grid: computationally efficient inference for log-Gaussian Cox processes

被引:118
|
作者
Simpson, D. [1 ]
Illian, J. B. [2 ]
Lindgren, F. [3 ]
Sorbye, S. H. [4 ]
Rue, H. [5 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[4] UiT Arctic Univ Norway, Dept Math & Stat, N-9037 Tromso, Norway
[5] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Approximation of Gaussian random fields; Gaussian Markov random field; Integrated nested Laplace approximation; Spatial point process; Stochastic partial differential equation; INVERSE PROBLEMS; APPROXIMATION; MODELS; DISTRIBUTIONS; DIVERSITY; PATTERNS; FIELDS;
D O I
10.1093/biomet/asv064
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces a new method for performing computational inference on log-Gaussian Cox processes. The likelihood is approximated directly by making use of a continuously specified Gaussian random field. We show that for sufficiently smooth Gaussian random field prior distributions, the approximation can converge with arbitrarily high order, whereas an approximation based on a counting process on a partition of the domain achieves only first-order convergence. The results improve upon the general theory of convergence for stochastic partial differential equation models introduced by Lindgren et al. (2011). The new method is demonstrated on a standard point pattern dataset, and two interesting extensions to the classical log-Gaussian Cox process framework are discussed. The first extension considers variable sampling effort throughout the observation window and implements the method of Chakraborty et al. (2011). The second extension constructs a log-Gaussian Cox process on the world's oceans. The analysis is performed using integrated nested Laplace approximation for fast approximate inference.
引用
收藏
页码:49 / 70
页数:22
相关论文
共 50 条
  • [21] Spatial and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm
    Diggle, Peter J.
    Moraga, Paula
    Rowlingson, Barry
    Taylor, Benjamin M.
    STATISTICAL SCIENCE, 2013, 28 (04) : 542 - 563
  • [22] Spatiotemporal prediction for log-Gaussian Cox processes (vol 63, pg 823, 2001)
    Brix, A
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 946 - 946
  • [23] Spatiotemporal prediction for log-Gaussian Cox processes (vol 63, pg 823, 2001)
    Taylor, Benjamin M.
    Diggle, Peter J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 601 - 602
  • [24] Intercalibration of survey methods using paired fishing operations and log-Gaussian Cox processes
    Thygesen, Uffe Hogsbro
    Kristensen, Kasper
    Jansen, Teunis
    Beyer, Jan E.
    ICES JOURNAL OF MARINE SCIENCE, 2019, 76 (04) : 1189 - 1199
  • [25] Assessing minimum contrast parameter estimation for spatial and spatiotemporal log-Gaussian Cox processes
    Davies, Tilman M.
    Hazelton, Martin L.
    STATISTICA NEERLANDICA, 2013, 67 (04) : 355 - 389
  • [26] INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes
    Taylor, Benjamin M.
    Diggle, Peter J.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (10) : 2266 - 2284
  • [27] Feasibility of Monte-Carlo maximum likelihood for fitting spatial log-Gaussian Cox processes
    Macdonald, Bethany J.
    Davies, Tilman M.
    Hazelton, Martin L.
    SPATIAL STATISTICS, 2023, 56
  • [28] Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
    Donner, Christian
    Opper, Manfred
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [29] A spatially discrete approximation to log-Gaussian Cox processes for modelling aggregated disease count data
    Johnson, Olatunji
    Diggle, Peter
    Giorgi, Emanuele
    STATISTICS IN MEDICINE, 2019, 38 (24) : 4871 - 4887
  • [30] Log Gaussian Cox processes
    Moller, J
    Syversveen, AR
    Waagepetersen, RP
    SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 451 - 482