Multi-label classification via multi-target regression on data streams

被引:1
|
作者
Aljaž Osojnik
Panče Panov
Sašo Džeroski
机构
[1] Jožef Stefan Institute,
[2] Jožef Stefan International Postgraduate School,undefined
[3] Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins,undefined
来源
Machine Learning | 2017年 / 106卷
关键词
Multi-label classification; Multi-target regression; Data stream mining;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-label classification (MLC) tasks are encountered more and more frequently in machine learning applications. While MLC methods exist for the classical batch setting, only a few methods are available for streaming setting. In this paper, we propose a new methodology for MLC via multi-target regression in a streaming setting. Moreover, we develop a streaming multi-target regressor iSOUP-Tree that uses this approach. We experimentally compare two variants of the iSOUP-Tree method (building regression and model trees), as well as ensembles of iSOUP-Trees with state-of-the-art tree and ensemble methods for MLC on data streams. We evaluate these methods on a variety of measures of predictive performance (appropriate for the MLC task). The ensembles of iSOUP-Trees perform significantly better on some of these measures, especially the ones based on label ranking, and are not significantly worse than the competitors on any of the remaining measures. We identify the thresholding problem for the task of MLC on data streams as a key issue that needs to be addressed in order to obtain even better results in terms of predictive performance.
引用
收藏
页码:745 / 770
页数:25
相关论文
共 50 条
  • [41] Unsupervised concept drift detection for multi-label data streams
    Gulcan, Ege Berkay
    Can, Fazli
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2401 - 2434
  • [42] INTERPRETABLE MULTI-LABEL CLASSIFICATION BY MEANS OF MULTIVARIATE LINEAR REGRESSION
    Bierman, Surette
    SOUTH AFRICAN STATISTICAL JOURNAL, 2019, 53 (01) : 1 - 13
  • [43] Air pollution prediction via multi-label classification
    Corani, Giorgio
    Scanagatta, Mauro
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 80 : 259 - 264
  • [44] Multi-target regression via output space quantization
    Spyromitros-Xioufis, Eleftherios
    Sechidis, Konstantinos
    Vlahavas, Ioannis
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [45] Multi-label classification of feedbacks
    Ruiz Alonso, Dorian
    Zepeda Cortes, Claudia
    Castillo Zacatelco, Hilda
    Carballido Carranza, Jose Luis
    Garcia Cue, Jose Luis
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (05) : 4337 - 4343
  • [46] The advances in multi-label classification
    Chen, Shijun
    Gao, Lin
    2014 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT (ICMECG), 2014, : 240 - 245
  • [47] Drift Detection for Multi-label Data Streams Based on Label Grouping and Entropy
    Shi, Zhongwei
    Wen, Yimin
    Feng, Chao
    Zhao, Hai
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, : 724 - 731
  • [48] Fine-Grained Emotion Analysis of Arabic Tweets: A Multi-Target Multi-Label Approach
    Badarneh, Omar
    Al-Ayyoub, Mahmoud
    Alhindawi, Nouh
    Tawalbeh, Lo'ai A.
    Jararweh, Yaser
    2018 IEEE 12TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2018, : 340 - 345
  • [49] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [50] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301