Multi-label classification via multi-target regression on data streams

被引:1
|
作者
Aljaž Osojnik
Panče Panov
Sašo Džeroski
机构
[1] Jožef Stefan Institute,
[2] Jožef Stefan International Postgraduate School,undefined
[3] Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins,undefined
来源
Machine Learning | 2017年 / 106卷
关键词
Multi-label classification; Multi-target regression; Data stream mining;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-label classification (MLC) tasks are encountered more and more frequently in machine learning applications. While MLC methods exist for the classical batch setting, only a few methods are available for streaming setting. In this paper, we propose a new methodology for MLC via multi-target regression in a streaming setting. Moreover, we develop a streaming multi-target regressor iSOUP-Tree that uses this approach. We experimentally compare two variants of the iSOUP-Tree method (building regression and model trees), as well as ensembles of iSOUP-Trees with state-of-the-art tree and ensemble methods for MLC on data streams. We evaluate these methods on a variety of measures of predictive performance (appropriate for the MLC task). The ensembles of iSOUP-Trees perform significantly better on some of these measures, especially the ones based on label ranking, and are not significantly worse than the competitors on any of the remaining measures. We identify the thresholding problem for the task of MLC on data streams as a key issue that needs to be addressed in order to obtain even better results in terms of predictive performance.
引用
收藏
页码:745 / 770
页数:25
相关论文
共 50 条
  • [31] Multi-label Classification via Label-Topic Pairs
    Chen, Gang
    Peng, Yue
    Wang, Chongjun
    WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 32 - 44
  • [32] Label Embedding for Multi-label Classification Via Dependence Maximization
    Yachong Li
    Youlong Yang
    Neural Processing Letters, 2020, 52 : 1651 - 1674
  • [33] Multi-label relational classification via node and label correlation
    Zhang, Zan
    Wang, Hao
    Liu, Lin
    Li, Jiuyong
    NEUROCOMPUTING, 2018, 292 : 72 - 81
  • [34] Label Embedding for Multi-label Classification Via Dependence Maximization
    Li, Yachong
    Yang, Youlong
    NEURAL PROCESSING LETTERS, 2020, 52 (02) : 1651 - 1674
  • [35] Web Genre Classification via Hierarchical Multi-label Classification
    Madjarov, Gjorgji
    Vidulin, Vedrana
    Dimitrovski, Ivica
    Kocev, Dragi
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2015, 2015, 9375 : 9 - 17
  • [36] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [37] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [38] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785
  • [39] Unsupervised concept drift detection for multi-label data streams
    Ege Berkay Gulcan
    Fazli Can
    Artificial Intelligence Review, 2023, 56 : 2401 - 2434
  • [40] Incremental deep forest for multi-label data streams learning
    Liang, Shunpan
    Pan, Weiwei
    You, Dianlong
    Liu, Ze
    Yin, Ling
    APPLIED INTELLIGENCE, 2022, 52 (12) : 13398 - 13414