Multi-label Deepfake Classification

被引:0
|
作者
Singh, Inder Pal [1 ]
Mejri, Nesryne [1 ]
Nguyen, Van Dat [1 ]
Ghorbel, Enjie [1 ]
Aouada, Djamila [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, Luxembourg, Luxembourg
关键词
Deepfake detection; Multi-Label Classification; Stacked Manipulations;
D O I
10.1109/MMSP59012.2023.10337658
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we investigate the suitability of current multi-label classification approaches for deepfake detection. With the recent advances in generative modeling, new deepfake detection methods have been proposed. Nevertheless, they mostly formulate this topic as a binary classification problem, resulting in poor explainability capabilities. Indeed, a forged image might be induced by multi-step manipulations with different properties. For a better interpretability of the results, recognizing the nature of these stacked manipulations is highly relevant. For that reason, we propose to model deepfake detection as a multi-label classification task, where each label corresponds to a specific kind of manipulation. In this context, state-of-the-art multi-label image classification methods are considered. Extensive experiments are performed to assess the practical use case of deepfake detection.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    [J]. 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [2] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [3] The advances in multi-label classification
    Chen, Shijun
    Gao, Lin
    [J]. 2014 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT (ICMECG), 2014, : 240 - 245
  • [4] Multi-label classification of feedbacks
    Alonso, Dorian Ruiz
    Cortés, Claudia Zepeda
    Zacatelco, Hilda Castillo
    Carranza, José Luis Carballido
    Cué, José Luis García
    [J]. Journal of Intelligent and Fuzzy Systems, 2022, 42 (05): : 4337 - 4343
  • [5] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    [J]. SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301
  • [6] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    [J]. Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [7] Robust label compression for multi-label classification
    Zhang, Ju-Jie
    Fang, Min
    Wu, Jin-Qiao
    Li, Xiao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 32 - 42
  • [8] Calibrated Multi-label Classification with Label Correlations
    He, Zhi-Fen
    Yang, Ming
    Liu, Hui-Dong
    Wang, Lei
    [J]. NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1361 - 1380
  • [9] Multi-Label Classification with Label Graph Superimposing
    Wang, Ya
    He, Dongliang
    Li, Fu
    Long, Xiang
    Zhou, Zhichao
    Ma, Jinwen
    Wen, Shilei
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12265 - 12272
  • [10] Multi-label classification by exploiting label correlations
    Yu, Ying
    Pedrycz, Witold
    Miao, Duoqian
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (06) : 2989 - 3004