Multi-Label Classification with Label Graph Superimposing

被引:0
|
作者
Wang, Ya [1 ,2 ]
He, Dongliang [3 ]
Li, Fu [3 ]
Long, Xiang [3 ]
Zhou, Zhichao [3 ]
Ma, Jinwen [1 ,2 ]
Wen, Shilei [3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Peking Univ, LMAM, Beijing, Peoples R China
[3] Baidu Inc, Dept Comp Vis Technol VIS, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Images or videos always contain multiple objects or actions. Multi-label recognition has been witnessed to achieve pretty performance attribute to the rapid development of deep learning technologies. Recently, graph convolution network (GCN) is leveraged to boost the performance of multi-label recognition. However, what is the best way for label correlation modeling and how feature learning can be improved with label system awareness are still unclear. In this paper, we propose a label graph superimposing framework to improve the conventional GCN+CNN framework developed for multi-label recognition in the following two aspects. Firstly, we model the label correlations by superimposing label graph built from statistical co-occurrence information into the graph constructed from knowledge priors of labels, and then multi-layer graph convolutions are applied on the final superimposed graph for label embedding abstraction. Secondly, we propose to leverage embedding of the whole label system for better representation learning. In detail, lateral connections between GCN and CNN are added at shallow, middle and deep layers to inject information of label system into backbone CNN for label-awareness in the feature learning process. Extensive experiments are carried out on MS-COCO and Charades datasets, showing that our proposed solution can greatly improve the recognition performance and achieves new state-of-the-art recognition performance.
引用
收藏
页码:12265 / 12272
页数:8
相关论文
共 50 条
  • [1] Knowledge Graph Constraints for Multi-label Graph Classification
    Ringsquandl, Martin
    Lamparter, Steffen
    Thon, Ingo
    Lepratti, Raffaello
    Kroeger, Peer
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 121 - 127
  • [2] Multi-label graph node classification with label attentive neighborhood convolution
    Zhou, Cangqi
    Chen, Hui
    Zhang, Jing
    Li, Qianmu
    Hu, Dianming
    Sheng, Victor S.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 180
  • [3] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    [J]. 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [4] Three-way graph convolutional network for multi-label classification in multi-label information system
    Yu, Bin
    Xie, Hengjie
    Fu, Yu
    Xu, Zeshui
    [J]. APPLIED SOFT COMPUTING, 2024, 161
  • [5] Label-representative graph convolutional network for multi-label text classification
    Huy-The Vu
    Minh-Tien Nguyen
    Van-Chien Nguyen
    Minh-Hieu Pham
    Van-Quyet Nguyen
    Van-Hau Nguyen
    [J]. APPLIED INTELLIGENCE, 2023, 53 (12) : 14759 - 14774
  • [6] Label Correlation Based Graph Convolutional Network for Multi-label Text Classification
    Huy-The Vu
    Minh-Tien Nguyen
    Van-Chien Nguyen
    Manh-Tran Tien
    Van-Hau Nguyen
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Label-representative graph convolutional network for multi-label text classification
    Huy-The Vu
    Minh-Tien Nguyen
    Van-Chien Nguyen
    Minh-Hieu Pham
    Van-Quyet Nguyen
    Van-Hau Nguyen
    [J]. Applied Intelligence, 2023, 53 : 14759 - 14774
  • [8] Scene-Aware Label Graph Learning for Multi-Label Image Classification
    Zhu, Xuelin
    Liu, Jian
    Liu, Weijia
    Ge, Jiawei
    Liu, Bo
    Cao, Jiuxin
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1473 - 1482
  • [9] An approach for multi-label classification by directed acyclic graph with label correlation maximization
    Lee, Jaedong
    Kim, Heera
    Kim, Noo-ri
    Lee, Jee-Hyong
    [J]. INFORMATION SCIENCES, 2016, 351 : 101 - 114
  • [10] Label-aware graph representation learning for multi-label image classification
    Chen, Yilu
    Zou, Changzhong
    Chen, Jianli
    [J]. NEUROCOMPUTING, 2022, 492 : 50 - 61