Multi-label Dysfluency Classification

被引:0
|
作者
Jouaiti, Melanie [1 ]
Dautenhahn, Kerstin [1 ]
机构
[1] Univ Waterloo, Elect & Comp Engn Dept, 20 Univ Ave, Waterloo, ON N2L3G1, Canada
来源
关键词
Dysfluency classification; Transfer learning; Multi-label classification; SPEECH; CHILDREN;
D O I
10.1007/978-3-031-20980-2_25
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Stuttering is a neuro-developmental disorder represented in 1% of the population. Dysfluency classification is still an open research question, with concerns of which feature representation or which classifier to use. Another issue, which has been neglected so far, is how to deal with audio samples that contain more than one type of dysfluency. Research has mostly preferred considering only single-labels problems, in part due to the lack of substantial multi-labels datasets. However, the FluencyBank and SEP-28K datasets are now available and contain multi-label data, which should pave the way for more research taking this aspect into account. In this paper, we give an overview of different ways to handle multi-label classification and compare them, while fine-tuning the ResNet50 network to perform multi-label dysfluency classification. We show that, fine-tuning the ResNet50, independently of the label representation, performs better than current state of the art results.
引用
收藏
页码:290 / 301
页数:12
相关论文
共 50 条
  • [1] Harnessing Uncertainty - Multi-label Dysfluency Classification with Uncertain Labels
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    [J]. SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 302 - 311
  • [2] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    [J]. 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [3] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [4] The advances in multi-label classification
    Chen, Shijun
    Gao, Lin
    [J]. 2014 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT (ICMECG), 2014, : 240 - 245
  • [5] Multi-label classification of feedbacks
    Alonso, Dorian Ruiz
    Cortés, Claudia Zepeda
    Zacatelco, Hilda Castillo
    Carranza, José Luis Carballido
    Cué, José Luis García
    [J]. Journal of Intelligent and Fuzzy Systems, 2022, 42 (05): : 4337 - 4343
  • [6] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    [J]. 2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [7] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    [J]. Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [8] Robust label compression for multi-label classification
    Zhang, Ju-Jie
    Fang, Min
    Wu, Jin-Qiao
    Li, Xiao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 32 - 42
  • [9] Calibrated Multi-label Classification with Label Correlations
    He, Zhi-Fen
    Yang, Ming
    Liu, Hui-Dong
    Wang, Lei
    [J]. NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1361 - 1380
  • [10] Multi-Label Classification with Label Graph Superimposing
    Wang, Ya
    He, Dongliang
    Li, Fu
    Long, Xiang
    Zhou, Zhichao
    Ma, Jinwen
    Wen, Shilei
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12265 - 12272