Real-Time Plume Detection and Segmentation Using Neural Networks

被引:0
|
作者
Dwight Temple
机构
[1] ExoAnalytic Solutions,
关键词
Plume; Anomaly; Convolutional; Tracking; Satellite;
D O I
暂无
中图分类号
学科分类号
摘要
Applications of artificial intelligence have been gaining extraordinary traction in recent years across innumerable domains. These novel approaches and technological leaps permit leveraging profound quantities of data in a manner from which to elucidate and ease the modeling of arduous physical phenomena. ExoAnalytic collects over 500,000 resident space object images nightly with an arsenal of over 300 autonomous sensors; extending the autonomy of collection to data curation, anomaly detection, and notification is of paramount importance if elusive events are desired to be captured and classified. Efforts begin with rigorous image annotation of observed glints, streaking stars, and resident space objects with plumes from debris shedding events. Preliminary results permitted the successful classification of observed debris generating events from AMC-9, Telkom-1, and Intelsat-29e. After initial proof-of-concept, these events are incorporated into the training pipeline in order to characterize potentially unknown debris generating or anomalous events in future observations. The inclusion of a visual tracking system aides in reducing false alarms by roughly 30%. Future efforts include applications on both historical datamining as well as real-time indications and warnings for satellite analysts in their daily operations while maintaining a low probability of false alarm through detection and tracking algorithm refinement.
引用
收藏
页码:1793 / 1810
页数:17
相关论文
共 50 条
  • [1] Real-Time Plume Detection and Segmentation Using Neural Networks
    Temple, Dwight
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2020, 67 (04): : 1793 - 1810
  • [2] Real-time detection of uncalibrated sensors using neural networks
    Luis J. Muñoz-Molina
    Ignacio Cazorla-Piñar
    Juan P. Dominguez-Morales
    Luis Lafuente
    Fernando Perez-Peña
    Neural Computing and Applications, 2022, 34 : 8227 - 8239
  • [3] Adaptive real-time road detection using neural networks
    Foedisch, M
    Takeuchi, A
    ITSC 2004: 7TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, PROCEEDINGS, 2004, : 167 - 172
  • [4] Real-time detection of uncalibrated sensors using neural networks
    Munoz-Molina, Luis J.
    Cazorla-Pinar, Ignacio
    Dominguez-Morales, Juan P.
    Lafuente, Luis
    Perez-Pena, Fernando
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 8227 - 8239
  • [5] Real-Time Grasp Detection Using Convolutional Neural Networks
    Redmon, Joseph
    Angelova, Anelia
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1316 - 1322
  • [6] Real-Time Face Detection Using Artificial Neural Networks
    Aulestia, Pablo S.
    Talahua, Jonathan S.
    Andaluz, Victor H.
    Benalcazar, Marco E.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 590 - 599
  • [7] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    FRONTIERS IN BIG DATA, 2023, 6
  • [8] Real-Time Pedestrian Detection Using Convolutional Neural Networks
    Kuang, Ping
    Ma, Tingsong
    Li, Fan
    Chen, Ziwei
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [9] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [10] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    PLOS ONE, 2019, 14 (03):