Real-Time Plume Detection and Segmentation Using Neural Networks

被引:0
|
作者
Dwight Temple
机构
[1] ExoAnalytic Solutions,
关键词
Plume; Anomaly; Convolutional; Tracking; Satellite;
D O I
暂无
中图分类号
学科分类号
摘要
Applications of artificial intelligence have been gaining extraordinary traction in recent years across innumerable domains. These novel approaches and technological leaps permit leveraging profound quantities of data in a manner from which to elucidate and ease the modeling of arduous physical phenomena. ExoAnalytic collects over 500,000 resident space object images nightly with an arsenal of over 300 autonomous sensors; extending the autonomy of collection to data curation, anomaly detection, and notification is of paramount importance if elusive events are desired to be captured and classified. Efforts begin with rigorous image annotation of observed glints, streaking stars, and resident space objects with plumes from debris shedding events. Preliminary results permitted the successful classification of observed debris generating events from AMC-9, Telkom-1, and Intelsat-29e. After initial proof-of-concept, these events are incorporated into the training pipeline in order to characterize potentially unknown debris generating or anomalous events in future observations. The inclusion of a visual tracking system aides in reducing false alarms by roughly 30%. Future efforts include applications on both historical datamining as well as real-time indications and warnings for satellite analysts in their daily operations while maintaining a low probability of false alarm through detection and tracking algorithm refinement.
引用
收藏
页码:1793 / 1810
页数:17
相关论文
共 50 条
  • [31] Real-time flood forecasting using neural networks
    Thirumalaiah, K.
    Deo, M.C.
    Computer-Aided Civil and Infrastructure Engineering, 1998, 13 (02): : 101 - 111
  • [32] Real-time excitation controller using neural networks
    Fan, S
    Mao, CX
    Lu, JM
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2003, 11 (03): : 151 - 156
  • [33] Real-time condition monitoring using neural networks
    Marzi, H
    ADVANCES IN MANUFACTURING TECHNOLOGY - XV, 2001, : 383 - 388
  • [34] Real-time flow control using neural networks
    Chan, HL
    Rad, AB
    ISA TRANSACTIONS, 2000, 39 (01) : 93 - 101
  • [35] BRIGHT - Graph Neural Networks in Real-Time Fraud Detection
    Lu, Mingxuan
    Han, Zhichao
    Rao, Susie Xi
    Zhang, Zitao
    Zhao, Yang
    Shan, Yinan
    Raghunathan, Ramesh
    Zhang, Ce
    Jiang, Jiawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3342 - 3351
  • [36] Real-Time Detection of Gait Events by Recurrent Neural Networks
    Wang, Fu-Cheng
    Li, You-Chi
    Kuo, Tien-Yun
    Chen, Szu-Fu
    Lin, Chin-Hsien
    IEEE ACCESS, 2021, 9 : 134849 - 134857
  • [37] Convolutional neural networks for real-time epileptic seizure detection
    Achilles, Felix
    Tombari, Federico
    Belagiannis, Vasileios
    Loesch, Anna Mira
    Noachtar, Soheyl
    Navab, Nassir
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03): : 264 - 269
  • [38] Convolutional Neural Networks for Real-Time and Wireless Damage Detection
    Avci, Onur
    Abdeljaber, Osama
    Kiranyaz, Serkan
    Inman, Daniel
    DYNAMICS OF CIVIL STRUCTURES, VOL 2, IMAC 2019, 2020, : 129 - 136
  • [39] Intelligent Real-Time Earthquake Detection by Recurrent Neural Networks
    Chin, Tai-Lin
    Chen, Kuan-Yu
    Chen, Da-Yi
    Lin, De-En
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5440 - 5449
  • [40] Real-time license plate detection and recognition using deep convolutional neural networks
    Silva, Sergio Montazzolli
    Jung, Claudio Rosito
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71