Real-Time Plume Detection and Segmentation Using Neural Networks

被引:0
|
作者
Dwight Temple
机构
[1] ExoAnalytic Solutions,
关键词
Plume; Anomaly; Convolutional; Tracking; Satellite;
D O I
暂无
中图分类号
学科分类号
摘要
Applications of artificial intelligence have been gaining extraordinary traction in recent years across innumerable domains. These novel approaches and technological leaps permit leveraging profound quantities of data in a manner from which to elucidate and ease the modeling of arduous physical phenomena. ExoAnalytic collects over 500,000 resident space object images nightly with an arsenal of over 300 autonomous sensors; extending the autonomy of collection to data curation, anomaly detection, and notification is of paramount importance if elusive events are desired to be captured and classified. Efforts begin with rigorous image annotation of observed glints, streaking stars, and resident space objects with plumes from debris shedding events. Preliminary results permitted the successful classification of observed debris generating events from AMC-9, Telkom-1, and Intelsat-29e. After initial proof-of-concept, these events are incorporated into the training pipeline in order to characterize potentially unknown debris generating or anomalous events in future observations. The inclusion of a visual tracking system aides in reducing false alarms by roughly 30%. Future efforts include applications on both historical datamining as well as real-time indications and warnings for satellite analysts in their daily operations while maintaining a low probability of false alarm through detection and tracking algorithm refinement.
引用
收藏
页码:1793 / 1810
页数:17
相关论文
共 50 条
  • [11] Robust real-time face detection using hybrid neural networks
    Kim, Ho-Joon
    Lee, Juho
    Yang, Hyun-Seung
    COMPUTATIONAL INTELLIGENCE AND BIOINFORMATICS, PT 3, PROCEEDINGS, 2006, 4115 : 721 - 730
  • [12] Towards Real-Time Drone Detection Using Deep Neural Networks
    Pulido, Cristhiam
    Ceron, Alexander
    DEVELOPMENTS AND ADVANCES IN DEFENSE AND SECURITY, MICRADS 2021, 2022, 255 : 149 - 159
  • [13] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodríguez, Alba
    Domínguez-Carbajales, Rubén
    Campos-Tato, Fernando
    Herrero, Jesús
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sánchez, Eloy
    Iglesias, Águeda
    Cubiella, Joaquín
    Fdez-Riverola, Florentino
    López-Fernández, Hugo
    Reboiro-Jato, Miguel
    Glez-Peña, Daniel
    Neural Computing and Applications, 2022, 34 (13) : 10375 - 10396
  • [14] Real-Time Gender Detection in the Wild Using Deep Neural Networks
    Zeni, Luis Felipe
    Jung, Claudio
    PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 118 - 125
  • [15] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [16] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [17] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [18] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336
  • [19] REAL-TIME VEHICLE DETECTION AND TRACKING USING DEEP NEURAL NETWORKS
    Gu, Xiao-Feng
    Chen, Zi-Wei
    Ma, Ting-Song
    Li, Fan
    Yan, Long
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 167 - 170
  • [20] Real-time pedestrian detection using LIDAR and convolutional neural networks
    Szarvas, Mate
    Sakai, Utsushi
    Ogata, Jun
    2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 213 - +