Real-time polyp detection model using convolutional neural networks

被引:0
|
作者
Alba Nogueira-Rodríguez
Rubén Domínguez-Carbajales
Fernando Campos-Tato
Jesús Herrero
Manuel Puga
David Remedios
Laura Rivas
Eloy Sánchez
Águeda Iglesias
Joaquín Cubiella
Florentino Fdez-Riverola
Hugo López-Fernández
Miguel Reboiro-Jato
Daniel Glez-Peña
机构
[1] Department of Computer Science,CINBIO, Universidade de Vigo
[2] ESEI - Escuela Superior de Ingeniería Informática,SING Research Group
[3] Galicia Sur Health Research Institute (IIS Galicia Sur),Department of Gastroenterology
[4] SERGAS-UVIGO,Instituto de Investigação E Inovação Em Saúde (I3S)
[5] Servicio de Sistemas y Tecnologías de la Información,undefined
[6] Complexo Hospitalario Universitario de Ourense,undefined
[7] Complexo Hospitalario Universitario de Ourense,undefined
[8] Instituto de Investigación Sanitaria Galicia Sur,undefined
[9] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd),undefined
[10] Universidade Do Porto,undefined
[11] Instituto de Biologia Molecular E Celular (IBMC),undefined
来源
关键词
Colorectal cancer; Polyp detection; Deep learning; Real time;
D O I
暂无
中图分类号
学科分类号
摘要
Colorectal cancer is a major health problem, where advances towards computer-aided diagnosis (CAD) systems to assist the endoscopist can be a promising path to improvement. Here, a deep learning model for real-time polyp detection based on a pre-trained YOLOv3 (You Only Look Once) architecture and complemented with a post-processing step based on an object-tracking algorithm to reduce false positives is reported. The base YOLOv3 network was fine-tuned using a dataset composed of 28,576 images labelled with locations of 941 polyps that will be made public soon. In a frame-based evaluation using isolated images containing polyps, a general F1 score of 0.88 was achieved (recall = 0.87, precision = 0.89), with lower predictive performance in flat polyps, but higher for sessile, and pedunculated morphologies, as well as with the usage of narrow band imaging, whereas polyp size < 5 mm does not seem to have significant impact. In a polyp-based evaluation using polyp and normal mucosa videos, with a positive criterion defined as the presence of at least one 50-frames-length (window size) segment with a ratio of 75% of frames with predicted bounding boxes (frames positivity), 72.61% of sensitivity (95% CI 68.99–75.95) and 83.04% of specificity (95% CI 76.70–87.92) were achieved (Youden = 0.55, diagnostic odds ratio (DOR) = 12.98). When the positive criterion is less stringent (window size = 25, frames positivity = 50%), sensitivity reaches around 90% (sensitivity = 89.91%, 95% CI 87.20–91.94; specificity = 54.97%, 95% CI 47.49–62.24; Youden = 0.45; DOR = 10.76). The object-tracking algorithm has demonstrated a significant improvement in specificity whereas maintaining sensitivity, as well as a marginal impact on computational performance. These results suggest that the model could be effectively integrated into a CAD system.
引用
收藏
页码:10375 / 10396
页数:21
相关论文
共 50 条
  • [1] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [2] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    [J]. PLOS ONE, 2019, 14 (03):
  • [3] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    [J]. FRONTIERS IN BIG DATA, 2023, 6
  • [4] Real-Time Pedestrian Detection Using Convolutional Neural Networks
    Kuang, Ping
    Ma, Tingsong
    Li, Fan
    Chen, Ziwei
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [5] Real-Time Grasp Detection Using Convolutional Neural Networks
    Redmon, Joseph
    Angelova, Anelia
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1316 - 1322
  • [6] A Real-Time Polyp-Detection System with Clinical Application in Colonoscopy Using Deep Convolutional Neural Networks
    Krenzer, Adrian
    Banck, Michael
    Makowski, Kevin
    Hekalo, Amar
    Fitting, Daniel
    Troya, Joel
    Sudarevic, Boban
    Zoller, Wolfgang G.
    Hann, Alexander
    Puppe, Frank
    [J]. JOURNAL OF IMAGING, 2023, 9 (02)
  • [7] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    [J]. LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [8] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [9] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    [J]. ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336
  • [10] Real-time pedestrian detection using LIDAR and convolutional neural networks
    Szarvas, Mate
    Sakai, Utsushi
    Ogata, Jun
    [J]. 2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 213 - +