Real-time lidar feature detection using convolutional neural networks

被引:0
|
作者
McGill, Matthew J. [1 ]
Roberson, Stephen D. [2 ]
Ziegler, William [2 ]
Smith, Ron [2 ]
Yorks, John E. [3 ]
机构
[1] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA
[2] 4S Silversword Software & Serv LLC, 5520 Res Pk Dr,Suite 230, Baltimore, MD 21228 USA
[3] Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA
关键词
lidar; aerosols; plume detection; air quality; machine learning; drones; CALIBRATION; ASSIMILATION;
D O I
10.1117/12.3013563
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A limitation of traditional airborne and spaceborne lidar instruments is the inability to provide data products in real time. This challenge is compounded by typical research-driven desires to build ever more complicated lidar sensors, which overlooks the need to provide simple, but timely, data products to operational forecast models. Machine learning techniques using convolution neural networks (CNNs) have been developed and applied to single wavelength (e.g., 1064 nm) data from the airborne Cloud Physics Lidar (CPL) and have shown encouraging results for feature detection at finer resolutions compared to traditional methods, notably during noisy daytime conditions. Current technologies and properly scoped measurement goals, not intended as be-all/end-all research tools, permit designs for miniaturized lidar sensors that can be placed on drones and, ultimately, in constellations of minisats. Use of advanced machine learning techniques for data processing permits generation of real time data products that can be quickly assimilated into predictive models (for air quality and human health) and for generating real-time data products for decision making (such as hazardous plume detection and monitoring).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Real-time pedestrian detection using LIDAR and convolutional neural networks
    Szarvas, Mate
    Sakai, Utsushi
    Ogata, Jun
    [J]. 2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 213 - +
  • [2] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    [J]. FRONTIERS IN BIG DATA, 2023, 6
  • [3] Real-Time Pedestrian Detection Using Convolutional Neural Networks
    Kuang, Ping
    Ma, Tingsong
    Li, Fan
    Chen, Ziwei
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [4] Real-Time Grasp Detection Using Convolutional Neural Networks
    Redmon, Joseph
    Angelova, Anelia
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1316 - 1322
  • [5] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    [J]. PLOS ONE, 2019, 14 (03):
  • [6] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    [J]. Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [7] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [8] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [9] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    [J]. ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336
  • [10] Real-time Hand Gesture Detection and Classification Using Convolutional Neural Networks
    Koepueklue, Okan
    Gunduz, Ahmet
    Kose, Neslihan
    Rigoll, Gerhard
    [J]. 2019 14TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2019), 2019, : 407 - 414