Real-time gastric polyp detection using convolutional neural networks

被引:90
|
作者
Zhang, Xu [1 ]
Chen, Fei [2 ,3 ]
Yu, Tao [1 ]
An, Jiye [1 ]
Huang, Zhengxing [1 ]
Liu, Jiquan [1 ]
Hu, Weiling [2 ,4 ]
Wang, Liangjing [2 ,3 ]
Duan, Huilong [1 ]
Si, Jianmin [2 ,4 ]
机构
[1] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Key Lab Biomed Engn, Minist Educ, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Inst Gastroenterol, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ, Sch Med, Dept Gastroenterol, Affiliated Hosp 2, Hangzhou, Zhejiang, Peoples R China
[4] Zhejiang Univ, Sch Med, Sir Run Run Shaw Hosp, Dept Gastroenterol, Hangzhou, Zhejiang, Peoples R China
来源
PLOS ONE | 2019年 / 14卷 / 03期
基金
中国国家自然科学基金;
关键词
D O I
10.1371/journal.pone.0214133
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [2] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    [J]. Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [3] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodríguez, Alba
    Domínguez-Carbajales, Rubén
    Campos-Tato, Fernando
    Herrero, Jesús
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sánchez, Eloy
    Iglesias, Águeda
    Cubiella, Joaquín
    Fdez-Riverola, Florentino
    López-Fernández, Hugo
    Reboiro-Jato, Miguel
    Glez-Peña, Daniel
    [J]. Neural Computing and Applications, 2022, 34 (13) : 10375 - 10396
  • [4] Automatic Gastric Polyp Detection by Using Convolutional Neural Networks
    Yu, Ying
    Cao, Chanting
    Wang, Ruilin
    Zhang, Jie
    Gao, Feng
    Sun, Changyin
    Yu, Yao
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (04) : 1079 - 1086
  • [5] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    [J]. FRONTIERS IN BIG DATA, 2023, 6
  • [6] Real-Time Pedestrian Detection Using Convolutional Neural Networks
    Kuang, Ping
    Ma, Tingsong
    Li, Fan
    Chen, Ziwei
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [7] Real-Time Grasp Detection Using Convolutional Neural Networks
    Redmon, Joseph
    Angelova, Anelia
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1316 - 1322
  • [8] A Real-Time Polyp-Detection System with Clinical Application in Colonoscopy Using Deep Convolutional Neural Networks
    Krenzer, Adrian
    Banck, Michael
    Makowski, Kevin
    Hekalo, Amar
    Fitting, Daniel
    Troya, Joel
    Sudarevic, Boban
    Zoller, Wolfgang G.
    Hann, Alexander
    Puppe, Frank
    [J]. JOURNAL OF IMAGING, 2023, 9 (02)
  • [9] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    [J]. LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [10] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):