Non-Nehari manifold method for asymptotically periodic Schrödinger equations

被引:0
|
作者
XianHua Tang
机构
[1] Central South University,School of Mathematics and Statistics
来源
Science China Mathematics | 2015年 / 58卷
关键词
Schrödinger equation; non-Nehari manifold method; asymptotically periodic; ground state solutions of Nehari-Pankov type; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the semilinear Schrödinger equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}c} { - \Delta u + V(x)u = f(x,u), \mathbb{R}^N ,} \\ {u \in H^1 (\mathbb{R}^N ),} \\ \end{array} } \right.$$\end{document} where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x), V0 ∈ C(ℝN), V0(x) is 1-periodic in each of x1, x2, …, xN and sup[σ(−Δ + V0) ∩ (−∞, 0)] < 0 < inf[σ(−Δ + V0) ∩ (0, ∞)], V1 ∈ C(ℝN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al. (2006), Pankov (2005) and Szulkin and Weth (2009), we develop a more direct approach to generalize the main result of Szulkin and Weth (2009) by removing the “strictly increasing” condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.
引用
收藏
页码:715 / 728
页数:13
相关论文
共 50 条
  • [21] Nehari manifold and fibering map approach for fractional p(.)-Laplacian Schrödinger system
    El-Houari H.
    Chadli L.S.
    Hicham M.
    SeMA Journal, 2024, 81 (4) : 729 - 751
  • [22] Existence of Ground State Solutions for Generalized Quasilinear Schrödinger Equations with Asymptotically Periodic Potential
    Yan-Fang Xue
    Li-Ju Yu
    Jian-Xin Han
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [23] Method of Variations of Potential of Quasi-Periodic Schrödinger Equations
    Jackson Chan
    Geometric and Functional Analysis, 2008, 17 : 1416 - 1478
  • [24] On superlinear Schrödinger equations with periodic potential
    Shibo Liu
    Calculus of Variations and Partial Differential Equations, 2012, 45 : 1 - 9
  • [25] Non-Nehari Manifold Method for Hamiltonian Elliptic System with Hardy Potential: Existence and Asymptotic Properties of Ground State Solution
    Chen, Peng
    Tang, Xianhua
    Zhang, Limin
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [26] Non-Nehari Manifold Method for Hamiltonian Elliptic System with Hardy Potential: Existence and Asymptotic Properties of Ground State Solution
    Peng Chen
    Xianhua Tang
    Limin Zhang
    The Journal of Geometric Analysis, 2022, 32
  • [27] Quasilinear asymptotically periodic Schrödinger–Poisson system with subcritical growth
    Jing Zhang
    Lifeng Guo
    Miaomiao Yang
    Boundary Value Problems, 2020
  • [28] Normalized Solutions for Nonautonomous Schrödinger Equations on a Suitable Manifold
    Sitong Chen
    Xianhua Tang
    The Journal of Geometric Analysis, 2020, 30 : 1637 - 1660
  • [29] Non-periodic discrete Schrödinger equations: ground state solutions
    Guanwei Chen
    Martin Schechter
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [30] Center Manifold for Nonintegrable Nonlinear Schrödinger Equations on the Line
    Ricardo Weder
    Communications in Mathematical Physics, 2000, 215 : 343 - 356