Normalized Solutions for Nonautonomous Schrödinger Equations on a Suitable Manifold

被引:0
|
作者
Sitong Chen
Xianhua Tang
机构
[1] Central South University,School of Mathematics and Statistics
来源
关键词
Schrödinger equation; Normalized solution; Geometrical structure; 35B35; 35J60; 58J05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of normalized ground state solutions for the following Schrödinger equation -Δu-a(x)f(u)=λu,x∈RN;u∈H1(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u-a(x)f(u)=\lambda u, &{} x\in {\mathbb {R}}^N; \\ u\in H^1({\mathbb {R}}^N), \end{array} \right. \end{aligned}$$\end{document}and give a better representation of its geometrical structure, where N≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document}, λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb {R}}$$\end{document}, a∈C(RN,[0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathcal {C}}({\mathbb {R}}^N, [0, \infty ))$$\end{document} with 0<a∞:=lim|y|→∞a(y)≤a(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<a_{\infty }:=\lim _{|y|\rightarrow \infty }a(y)\le a(x)$$\end{document} and f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {\mathcal {C}}({\mathbb {R}},{\mathbb {R}})$$\end{document} satisfies general assumptions. In particular, we propose a new approach to recover the compactness for a minimizing sequence on a suitable manifold, and overcome the essential difficulties due to the nonconstant potential a.
引用
收藏
页码:1637 / 1660
页数:23
相关论文
共 50 条
  • [1] Normalized Solutions for Nonautonomous Schrodinger Equations on a Suitable Manifold
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1637 - 1660
  • [2] Normalized Ground States and Multiple Solutions for Nonautonomous Fractional Schrödinger Equations
    Chen Yang
    Shu-Bin Yu
    Chun-Lei Tang
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [3] Normalized solutions of nonlinear Schrödinger equations
    Thomas Bartsch
    Sébastien de Valeriola
    Archiv der Mathematik, 2013, 100 : 75 - 83
  • [4] Normalized solutions for the discrete Schrödinger equations
    Qilin Xie
    Huafeng Xiao
    Boundary Value Problems, 2023
  • [5] Normalized Solutions of Schrödinger Equations with Combined Nonlinearities
    Dai, Ting-ting
    Ou, Zeng-qi
    Lv, Ying
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [6] Normalized solutions for nonlinear Schrödinger equations on graphs
    Yang, Yunyan
    Zhao, Liang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (01)
  • [7] Normalized Solutions of Schrödinger Equations with Combined Nonlinearities
    Ting-ting Dai
    Zeng-qi Ou
    Ying Lv
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [8] Attractors of Nonautonomous Schrödinger Equations
    Yu-rong Liu
    Zeng-rong Liu
    Yong-ai Zheng
    Applied Mathematics and Mechanics, 2001, 22 : 180 - 189
  • [9] Attractors of nonautonomous Schrödinger equations
    Yu-rong L.
    Zeng-rong L.
    Yong-ai Z.
    Applied Mathematics and Mechanics, 2001, 22 (2) : 180 - 189
  • [10] Localization of normalized solutions for saturable nonlinear Schr?dinger equations
    Xiaoming Wang
    Zhi-Qiang Wang
    Xu Zhang
    Science China Mathematics, 2023, 66 (11) : 2495 - 2522