Method of Variations of Potential of Quasi-Periodic Schrödinger Equations

被引:0
|
作者
Jackson Chan
机构
[1] University of Toronto,Department of Mathematics
来源
关键词
Schrodinger equation; quasi-periodic potential; Anderson localization; Lyapunov exponent; avalanche principle; 82B44 (39A70, 47B39, 47N55, 81Q10);
D O I
暂无
中图分类号
学科分类号
摘要
We study the one-dimensional discrete quasi-periodic Schrödinger equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$-{\varphi}(n + 1) -{\varphi}(n - 1) + {\lambda}V (x + n\omega){\varphi}(n) = E{\varphi}(n),\quad n \in {\mathbb{Z}}$$ \end{document}. We introduce the notion of variations of potential and use it to define typical potential. We show that for typical C3 potential V, if the coupling constant λ is large, then for most frequencies ω, the Lyapunov exponent is positive for all energies E.
引用
收藏
页码:1416 / 1478
页数:62
相关论文
共 50 条