Non-Nehari manifold method for asymptotically periodic Schrödinger equations

被引:0
|
作者
XianHua Tang
机构
[1] Central South University,School of Mathematics and Statistics
来源
Science China Mathematics | 2015年 / 58卷
关键词
Schrödinger equation; non-Nehari manifold method; asymptotically periodic; ground state solutions of Nehari-Pankov type; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the semilinear Schrödinger equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}c} { - \Delta u + V(x)u = f(x,u), \mathbb{R}^N ,} \\ {u \in H^1 (\mathbb{R}^N ),} \\ \end{array} } \right.$$\end{document} where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x), V0 ∈ C(ℝN), V0(x) is 1-periodic in each of x1, x2, …, xN and sup[σ(−Δ + V0) ∩ (−∞, 0)] < 0 < inf[σ(−Δ + V0) ∩ (0, ∞)], V1 ∈ C(ℝN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al. (2006), Pankov (2005) and Szulkin and Weth (2009), we develop a more direct approach to generalize the main result of Szulkin and Weth (2009) by removing the “strictly increasing” condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.
引用
收藏
页码:715 / 728
页数:13
相关论文
共 50 条
  • [31] ON THE PERIODIC SOLITON SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATIONS
    Ali, Rashid
    Kumar, Devendra
    Akguel, Ali
    Altalbe, Ali
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (07N08)
  • [32] Multidomain spectral method for Schrödinger equations
    Mira Birem
    Christian Klein
    Advances in Computational Mathematics, 2016, 42 : 395 - 423
  • [33] Periodic wavetrains for systems of coupled nonlinear Schrödinger equations
    Kwok W Chow
    Derek WC Lai
    Pramana, 2001, 57 : 937 - 952
  • [34] Stationary States for Nonlinear Schrödinger Equations with Periodic Potentials
    Reika Fukuizumi
    Andrea Sacchetti
    Journal of Statistical Physics, 2014, 156 : 707 - 738
  • [35] Multiple solutions to logarithmic Schrödinger equations with periodic potential
    Marco Squassina
    Andrzej Szulkin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 585 - 597
  • [36] Multibump solutions for discrete periodic nonlinear Schrödinger equations
    Shiwang Ma
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1413 - 1442
  • [37] Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0
    Minbo Yang
    Wenxiong Chen
    Yanheng Ding
    Acta Applicandae Mathematicae, 2010, 110 : 1475 - 1488
  • [38] Gap Solitons in Periodic Discrete Schrödinger Equations with Nonlinearity
    Haiping Shi
    Acta Applicandae Mathematicae, 2010, 109 : 1065 - 1075
  • [39] Oscillations in space-periodic nonlinear Schrödinger equations
    S.B. Kuksin
    Geometric & Functional Analysis GAFA, 1997, 7 : 338 - 363
  • [40] New Results for Periodic Discrete Nonlinear SchröDinger Equations
    Xu, Xiaoliang
    Chen, Huiwen
    Ouyang, Zigen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5768 - 5780