Multidomain spectral method for Schrödinger equations

被引:0
|
作者
Mira Birem
Christian Klein
机构
[1] Université de Bourgogne,Institut de Mathématiques de Bourgogne
来源
关键词
Schrödinger equation; Nonlinear Schrödinger equation; Spectral methods; Transparent boundary conditions; Perfectly matched layers; Rogue waves; 65M70; 35Q41; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
A multidomain spectral method with compactified exterior domains combined with stable second and fourth order time integrators is presented for Schrödinger equations. The numerical approach allows high precision numerical studies of solutions on the whole real line. At examples for the linear and cubic nonlinear Schrödinger equation, this code is compared to transparent boundary conditions and perfectly matched layers approaches. The code can deal with asymptotically non vanishing solutions as the Peregrine breather being discussed as a model for rogue waves. It is shown that the Peregrine breather can be numerically propagated with essentially machine precision, and that localized perturbations of this solution can be studied.
引用
收藏
页码:395 / 423
页数:28
相关论文
共 50 条
  • [1] A spectral method for Schrödinger equations with smooth confinement potentials
    Jerry Gagelman
    Harry Yserentant
    Numerische Mathematik, 2012, 122 : 383 - 398
  • [2] Multidomain spectral method for Schrodinger equations
    Birem, Mira
    Klein, Christian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (02) : 395 - 423
  • [3] A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems
    A. H. Bhrawy
    E. H. Doha
    S. S. Ezz-Eldien
    Robert A. Van Gorder
    The European Physical Journal Plus, 129
  • [4] Spectral method and Bayesian parameter estimation for the space fractional coupled nonlinear Schrödinger equations
    Hui Zhang
    Xiaoyun Jiang
    Nonlinear Dynamics, 2019, 95 : 1599 - 1614
  • [5] A conservative spectral Galerkin method for the coupled nonlinear space-fractional Schr?dinger equations
    Wang, Ying
    Mei, Liquan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (12) : 2387 - 2410
  • [6] A multidomain spectral method for solving elliptic equations
    Pfeiffer, HP
    Kidder, LE
    Scheel, MA
    Teukolsky, SA
    COMPUTER PHYSICS COMMUNICATIONS, 2003, 152 (03) : 253 - 273
  • [7] Conservative Fourier spectral scheme for the coupled Schrödinger–Boussinesq equations
    Junjie Wang
    Advances in Difference Equations, 2018
  • [8] Spectral Element Method for the Schrödinger-Poisson System
    Candong Cheng
    Qing Huo Liu
    Joon-Ho Lee
    Hisham Z. Massoud
    Journal of Computational Electronics, 2004, 3 : 417 - 421
  • [9] A linearized conservative Galerkin–Legendre spectral method for the strongly coupled nonlinear fractional Schrödinger equations
    Mingfa Fei
    Guoyu Zhang
    Nan Wang
    Chengming Huang
    Advances in Difference Equations, 2020
  • [10] Novel method for solution of coupled radial Schrödinger equations
    S. N. Ershov
    J. S. Vaagen
    M. V. Zhukov
    Physics of Atomic Nuclei, 2011, 74 : 1151 - 1161