Multidomain spectral method for Schrödinger equations

被引:0
|
作者
Mira Birem
Christian Klein
机构
[1] Université de Bourgogne,Institut de Mathématiques de Bourgogne
来源
关键词
Schrödinger equation; Nonlinear Schrödinger equation; Spectral methods; Transparent boundary conditions; Perfectly matched layers; Rogue waves; 65M70; 35Q41; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
A multidomain spectral method with compactified exterior domains combined with stable second and fourth order time integrators is presented for Schrödinger equations. The numerical approach allows high precision numerical studies of solutions on the whole real line. At examples for the linear and cubic nonlinear Schrödinger equation, this code is compared to transparent boundary conditions and perfectly matched layers approaches. The code can deal with asymptotically non vanishing solutions as the Peregrine breather being discussed as a model for rogue waves. It is shown that the Peregrine breather can be numerically propagated with essentially machine precision, and that localized perturbations of this solution can be studied.
引用
收藏
页码:395 / 423
页数:28
相关论文
共 50 条
  • [11] Spectral identities for Schrödinger operators
    Guliyev, Namig J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [12] On a class of quasilinear Schrdinger equations
    舒级
    张健
    Applied Mathematics and Mechanics(English Edition), 2007, (07) : 981 - 986
  • [13] On a class of quasilinear schrödinger equations
    Ji Shu
    Jian Zhang
    Applied Mathematics and Mechanics, 2007, 28 : 981 - 986
  • [14] Schrödinger Equations with Fractional Laplacians
    Y. Hu
    G. Kallianpur
    Applied Mathematics & Optimization, 2000, 42 : 281 - 290
  • [15] On Inverse Dynamical and Spectral Problems for the Wave and Schrӧdinger Equations on Finite Trees. The Leaf Peeling Method
    Avdonin S.A.
    Mikhaylov V.S.
    Nurtazina K.B.
    Journal of Mathematical Sciences, 2017, 224 (1) : 1 - 10
  • [16] Attractors of nonautonomous Schrödinger equations
    Yu-rong L.
    Zeng-rong L.
    Yong-ai Z.
    Applied Mathematics and Mechanics, 2001, 22 (2) : 180 - 189
  • [17] Attractors of Nonautonomous Schrödinger Equations
    Yu-rong Liu
    Zeng-rong Liu
    Yong-ai Zheng
    Applied Mathematics and Mechanics, 2001, 22 : 180 - 189
  • [18] On the quasilinear Schrödinger equations on tori
    Iandoli, Felice
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (04) : 1913 - 1930
  • [19] On Turbulence in Nonlinear Schrödinger Equations
    S.B. Kuksin
    Geometric and Functional Analysis, 1997, 7 : 783 - 822
  • [20] On the hyperbolic nonlinear Schrödinger equations
    Saut, Jean-Claude
    Wang, Yuexun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):