Multidomain spectral method for Schrödinger equations

被引:0
|
作者
Mira Birem
Christian Klein
机构
[1] Université de Bourgogne,Institut de Mathématiques de Bourgogne
来源
关键词
Schrödinger equation; Nonlinear Schrödinger equation; Spectral methods; Transparent boundary conditions; Perfectly matched layers; Rogue waves; 65M70; 35Q41; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
A multidomain spectral method with compactified exterior domains combined with stable second and fourth order time integrators is presented for Schrödinger equations. The numerical approach allows high precision numerical studies of solutions on the whole real line. At examples for the linear and cubic nonlinear Schrödinger equation, this code is compared to transparent boundary conditions and perfectly matched layers approaches. The code can deal with asymptotically non vanishing solutions as the Peregrine breather being discussed as a model for rogue waves. It is shown that the Peregrine breather can be numerically propagated with essentially machine precision, and that localized perturbations of this solution can be studied.
引用
收藏
页码:395 / 423
页数:28
相关论文
共 50 条
  • [31] APPLICATION OF THE SPECTRAL MULTIDOMAIN METHOD TO THE NAVIER-STOKES EQUATIONS
    DANABASOGLU, G
    BIRINGEN, S
    STREETT, CL
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 113 (02) : 155 - 164
  • [32] On Spectral Problems of Discrete Schrödinger Operators
    Chi-Hua Chan
    Po-Chun Huang
    Applications of Mathematics, 2021, 66 : 325 - 344
  • [33] Radial Schrödinger equation: The spectral problem
    O. S. Pavlova
    A. R. Frenkin
    Theoretical and Mathematical Physics, 2000, 125 : 1506 - 1515
  • [34] Spectral instability for some Schrödinger operators
    A. Aslanyan
    E.B. Davies
    Numerische Mathematik, 2000, 85 : 525 - 552
  • [35] Spectral Multipliers for Magnetic Schrödinger Operators
    Zheng S.
    La Matematica, 2024, 3 (3): : 907 - 940
  • [36] Spectral asymptotics for generalized Schrödinger operators
    Do, Tan Duc
    Truong, Le Xuan
    ANNALES FENNICI MATHEMATICI, 2023, 48 (02): : 703 - 727
  • [37] Spectral surgery for the Schrödinger operator on graphs
    A. N. Bondarenko
    V. A. Dedok
    Doklady Mathematics, 2012, 85 : 367 - 368
  • [38] Inverse Spectral Problems for Schrödinger Operators
    Hamid Hezari
    Communications in Mathematical Physics, 2009, 288 : 1061 - 1088
  • [39] Spectral properties of the Schrödinger operator with δ-distribution
    M. Nursultanov
    Mathematical Notes, 2016, 100 : 263 - 275
  • [40] Schrödinger equations on locally symmetric spaces
    A. Fotiadis
    N. Mandouvalos
    M. Marias
    Mathematische Annalen, 2018, 371 : 1351 - 1374