Multidomain spectral method for Schrödinger equations

被引:0
|
作者
Mira Birem
Christian Klein
机构
[1] Université de Bourgogne,Institut de Mathématiques de Bourgogne
来源
关键词
Schrödinger equation; Nonlinear Schrödinger equation; Spectral methods; Transparent boundary conditions; Perfectly matched layers; Rogue waves; 65M70; 35Q41; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
A multidomain spectral method with compactified exterior domains combined with stable second and fourth order time integrators is presented for Schrödinger equations. The numerical approach allows high precision numerical studies of solutions on the whole real line. At examples for the linear and cubic nonlinear Schrödinger equation, this code is compared to transparent boundary conditions and perfectly matched layers approaches. The code can deal with asymptotically non vanishing solutions as the Peregrine breather being discussed as a model for rogue waves. It is shown that the Peregrine breather can be numerically propagated with essentially machine precision, and that localized perturbations of this solution can be studied.
引用
收藏
页码:395 / 423
页数:28
相关论文
共 50 条
  • [41] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [42] Observability for Schrödinger equations with quadratic Hamiltonians
    Waters, Alden
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (02):
  • [43] A system of Schrödinger equations in a wave guide
    Ayechi, Radhia
    Boukhris, Ilhem
    Royer, Julien
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (11)
  • [44] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [45] Conservation Laws for the Schrödinger—Newton Equations
    G. Gubbiotti
    M. C. Nucci
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 292 - 299
  • [46] Invariant Measure for Stochastic Schrödinger Equations
    T. Benoist
    M. Fraas
    Y. Pautrat
    C. Pellegrini
    Annales Henri Poincaré, 2021, 22 : 347 - 374
  • [47] A system of schrödinger equations in the critical case
    Puriuškis G.
    Lithuanian Mathematical Journal, 2001, 41 (1) : 65 - 71
  • [48] Gain of regularity for semilinear Schrödinger equations
    Hiroyuki Chihara
    Mathematische Annalen, 1999, 315 : 529 - 567
  • [49] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [50] Dispersive Properties for Discrete Schrödinger Equations
    Liviu I. Ignat
    Diana Stan
    Journal of Fourier Analysis and Applications, 2011, 17 : 1035 - 1065