On the integration of some classes of weakly deformed nonlinear Schrödinger equations

被引:0
|
作者
A. I. Zenchuk
机构
[1] Russian Academy of Sciences,L. D. Landau Institute of Theoretical Physics
关键词
03.65.Ge; 11.10.Lm;
D O I
暂无
中图分类号
学科分类号
摘要
A method is proposed for constructing the solutions of a nonlinear Schrödinger equation with small corrections arising as a result of the introduction of arbitrary functions of the time and coordinates into the operator that dresses the kernel of a local \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \partial $$ \end{document} problem.
引用
收藏
页码:222 / 228
页数:6
相关论文
共 50 条
  • [11] Conservation Laws of Deformed N-Coupled Nonlinear Schrödinger Equations and Deformed N-Coupled Hirota Equations
    Suresh Kumar S.
    Sahadevan R.
    International Journal of Applied and Computational Mathematics, 2020, 6 (1)
  • [12] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [13] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [14] The Derivative Nonlinear Schrödinger Equation in Analytic Classes
    Zoran Grujić
    Henrik Kalisch
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 1) : 62 - 71
  • [15] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [16] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [17] Global solutions of nonlinear Schrödinger equations
    Martin Schechter
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [18] Choreographies in the discrete nonlinear Schrödinger equations
    Renato Calleja
    Eusebius Doedel
    Carlos García-Azpeitia
    Carlos L. Pando L.
    The European Physical Journal Special Topics, 2018, 227 : 615 - 624
  • [19] On soliton dynamics in nonlinear schrödinger equations
    Zhou Gang
    I. M. Sigal
    Geometric & Functional Analysis GAFA, 2006, 16 : 1377 - 1390
  • [20] Group classification of nonlinear schrödinger equations
    Nikitin A.G.
    Popovych R.O.
    Ukrainian Mathematical Journal, 2001, 53 (8) : 1255 - 1265