On the integration of some classes of weakly deformed nonlinear Schrödinger equations

被引:0
|
作者
A. I. Zenchuk
机构
[1] Russian Academy of Sciences,L. D. Landau Institute of Theoretical Physics
关键词
03.65.Ge; 11.10.Lm;
D O I
暂无
中图分类号
学科分类号
摘要
A method is proposed for constructing the solutions of a nonlinear Schrödinger equation with small corrections arising as a result of the introduction of arbitrary functions of the time and coordinates into the operator that dresses the kernel of a local \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \partial $$ \end{document} problem.
引用
收藏
页码:222 / 228
页数:6
相关论文
共 50 条
  • [41] Dynamic behavior of solitons in nonlinear Schrödinger equations
    Khater, Mostafa M. A.
    Alfalqi, Suleman H.
    Vokhmintsev, Aleksander
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [42] Remarks on Nonlinear Schrödinger Equations with Harmonic Potential
    R. Carles
    Annales Henri Poincaré, 2002, 3 : 757 - 772
  • [43] Nonlocal Nonlinear Schrödinger Equations as Models of Superfluidity
    N. G. Berloff
    Journal of Low Temperature Physics, 1999, 116 : 359 - 380
  • [44] On Asymptotic Nonlocal Symmetry of Nonlinear Schrödinger Equations
    W. W. Zachary
    V. M. Shtelen
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 417 - 437
  • [45] Gauge transformations for a family of nonlinear schrödinger equations
    Goldin G.A.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (1-2) : 6 - 11
  • [46] On the stochastic nonlinear Schrödinger equations at critical regularities
    Tadahiro Oh
    Mamoru Okamoto
    Stochastics and Partial Differential Equations: Analysis and Computations, 2020, 8 : 869 - 894
  • [47] Normalized solutions for nonlinear Schrödinger equations on graphs
    Yang, Yunyan
    Zhao, Liang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (01)
  • [48] Supercritical Geometric Optics for Nonlinear Schrödinger Equations
    Thomas Alazard
    Rémi Carles
    Archive for Rational Mechanics and Analysis, 2009, 194 : 315 - 347
  • [49] Coupled nonlinear Schrödinger equations with harmonic potential
    Hezzi H.
    Nour M.M.
    Saanouni T.
    Arabian Journal of Mathematics, 2018, 7 (3) : 195 - 218
  • [50] Loss of regularity for supercritical nonlinear Schrödinger equations
    Thomas Alazard
    Rémi Carles
    Mathematische Annalen, 2009, 343 : 397 - 420