On the integration of some classes of weakly deformed nonlinear Schrödinger equations

被引:0
|
作者
A. I. Zenchuk
机构
[1] Russian Academy of Sciences,L. D. Landau Institute of Theoretical Physics
关键词
03.65.Ge; 11.10.Lm;
D O I
暂无
中图分类号
学科分类号
摘要
A method is proposed for constructing the solutions of a nonlinear Schrödinger equation with small corrections arising as a result of the introduction of arbitrary functions of the time and coordinates into the operator that dresses the kernel of a local \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \partial $$ \end{document} problem.
引用
收藏
页码:222 / 228
页数:6
相关论文
共 50 条
  • [31] Properties of weakly collapsing solutions to the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    Journal of Experimental and Theoretical Physics, 2003, 96 : 975 - 981
  • [32] Weakly coupled nonlinear Schrödinger systems: the saturation effect
    Liliane de Almeida Maia
    Eugenio Montefusco
    Benedetta Pellacci
    Calculus of Variations and Partial Differential Equations, 2013, 46 : 325 - 351
  • [33] A Matrix Schrödinger Approach to Focusing Nonlinear Schrödinger Equations with Nonvanishing Boundary Conditions
    Francesco Demontis
    Cornelis van der Mee
    Journal of Nonlinear Science, 2022, 32
  • [34] On the derivative nonlinear Schrödinger equation with weakly dissipative structure
    Chunhua Li
    Yoshinori Nishii
    Yuji Sagawa
    Hideaki Sunagawa
    Journal of Evolution Equations, 2021, 21 : 1541 - 1550
  • [35] Weakly nonlinear Schrödinger equation with random initial data
    Jani Lukkarinen
    Herbert Spohn
    Inventiones mathematicae, 2011, 183 : 79 - 188
  • [36] Smoothing effect in gevrey classes for Schrödinger equations II
    Kajitani K.
    Annali dell’Università di Ferrara, 1999, 45 (1): : 173 - 186
  • [37] A note on the symplectic integration of the nonlinear Schrödinger equation
    Heitzinger C.
    Ringhofer C.
    Journal of Computational Electronics, 2004, 3 (1) : 33 - 44
  • [38] Standing Waves of the Coupled Nonlinear Schrdinger Equations
    Linlin Yang
    Gongming Wei
    Analysis in Theory and Applications, 2014, 30 (04) : 345 - 353
  • [39] On the new critical exponent for the nonlinear Schrödinger equations
    Nakao Hayashi
    Pavel I. Naumkin
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 415 - 440
  • [40] Dynamics of three nonisospectral nonlinear Schrdinger equations
    Abdselam Silem
    张成
    张大军
    Chinese Physics B, 2019, 28 (02) : 82 - 93