Condensation and critical exponents of an ideal non-Abelian gas

被引:0
|
作者
Zahra Talaei
Behrouz Mirza
Hosein Mohammadzadeh
机构
[1] Isfahan University of Technology,Department of Physics
[2] University of Mohaghegh Ardabili,Department of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as |T-Tc|-ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \vert T-T_{c}\vert^{-\rho}$\end{document} in which Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ T_{c}$\end{document} denotes the condensation temperature and ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho$\end{document} is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.
引用
收藏
相关论文
共 50 条
  • [21] Adjoint non-Abelian coulomb gas at large N
    Semenoff, GW
    Zarembo, K
    NUCLEAR PHYSICS B, 1996, 480 (1-2) : 317 - 337
  • [22] The mixed non-Abelian Coulomb gas in two dimensions
    Gattringer, CR
    Paniak, LD
    Semenoff, GW
    RECENT DEVELOPMENTS IN NONPERTURBATIVE QUANTUM FIELD THEORY, 1998, : 79 - 103
  • [23] VORTEX CONDENSATION IN TWO-DIMENSIONAL NON-ABELIAN SPIN MODELS
    SOLOMON, S
    STAVANS, Y
    DOMANY, E
    PHYSICS LETTERS B, 1982, 112 (4-5) : 373 - 378
  • [24] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [25] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [26] Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement
    Bombin, H.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW B, 2008, 78 (11)
  • [27] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [28] Non-Abelian supertubes
    Fernandez-Melgarejo, Jose J.
    Park, Minkyu
    Shigemori, Masaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [29] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [30] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418