Condensation and critical exponents of an ideal non-Abelian gas

被引:0
|
作者
Zahra Talaei
Behrouz Mirza
Hosein Mohammadzadeh
机构
[1] Isfahan University of Technology,Department of Physics
[2] University of Mohaghegh Ardabili,Department of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as |T-Tc|-ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \vert T-T_{c}\vert^{-\rho}$\end{document} in which Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ T_{c}$\end{document} denotes the condensation temperature and ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho$\end{document} is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.
引用
收藏
相关论文
共 50 条
  • [31] Non-Abelian antibrackets
    Alfaro, J
    Damgaard, PH
    PHYSICS LETTERS B, 1996, 369 (3-4) : 289 - 294
  • [32] Non-abelian ramification
    Pongerard, P
    Wagschal, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01): : 51 - 88
  • [33] Non-abelian monopoles
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Murayama, H
    NUCLEAR PHYSICS B, 2004, 701 (1-2) : 207 - 246
  • [34] Flux compactification for the critical non-Abelian vortex and quark masses
    Yung, A.
    PHYSICAL REVIEW D, 2021, 104 (02)
  • [35] Non-abelian ramification
    Wagschal, C
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 115 - +
  • [36] NON-ABELIAN ORBIFOLDS
    INOUE, K
    SAKAMOTO, M
    TAKANO, H
    PROGRESS OF THEORETICAL PHYSICS, 1987, 78 (04): : 908 - 922
  • [37] Non-Abelian supertubes
    José J. Fernández-Melgarejo
    Minkyu Park
    Masaki Shigemori
    Journal of High Energy Physics, 2017
  • [38] Non-Abelian eikonals
    Fried, HM
    Gabellini, Y
    PHYSICAL REVIEW D, 1997, 55 (04): : 2430 - 2440
  • [39] On non-Abelian holonomies
    Alfaro, J
    Morales-Técotl, HA
    Reyes, M
    Urrutia, LF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (48): : 12097 - 12107
  • [40] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 808 - 813