Condensation and critical exponents of an ideal non-Abelian gas

被引:0
|
作者
Zahra Talaei
Behrouz Mirza
Hosein Mohammadzadeh
机构
[1] Isfahan University of Technology,Department of Physics
[2] University of Mohaghegh Ardabili,Department of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as |T-Tc|-ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \vert T-T_{c}\vert^{-\rho}$\end{document} in which Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ T_{c}$\end{document} denotes the condensation temperature and ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho$\end{document} is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.
引用
收藏
相关论文
共 50 条
  • [41] Non-Abelian firewall
    Singleton, Douglas
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2020, 29 (14):
  • [42] NON-ABELIAN ZILCH
    DESER, S
    NICOLAI, H
    PHYSICS LETTERS B, 1981, 98 (1-2) : 45 - 47
  • [43] NON-ABELIAN SINGLETONS
    FLATO, M
    FRONSDAL, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) : 524 - 531
  • [44] Non-Abelian geometry
    Dasgupta, K
    Yin, Z
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) : 313 - 338
  • [45] Non-Abelian vortex in four dimensions as a critical string on a conifold
    Koroteev, P.
    Shifman, M.
    Yung, A.
    PHYSICAL REVIEW D, 2016, 94 (06)
  • [46] Critical string from non-Abelian vortex in four dimensions
    Shifman, M.
    Yung, A.
    PHYSICS LETTERS B, 2015, 750 : 416 - 419
  • [47] ON NON-ABELIAN DUALITY
    ALVAREZ, E
    ALVAREZGAUME, L
    LOZANO, Y
    NUCLEAR PHYSICS B, 1994, 424 (01) : 155 - 183
  • [48] Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics
    Yasui, Shigehiro
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW B, 2011, 83 (13):
  • [49] Critical non-Abelian vortices and holography for little string theory
    Ievlev, E.
    Yung, A.
    PHYSICAL REVIEW D, 2021, 104 (11)
  • [50] INFINITE NON-ABELIAN GROUPS WITH INVARIANCE CONDITION FOR INFINITE NON-ABELIAN SUBGROUPS
    CHERNIKO.SN
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (06): : 1280 - &