Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel

被引:0
|
作者
M. Y. Mu
G. Z. Wang
F. Z. Xuan
S. T. Tu
机构
[1] East China University of Science and Technology,Key Laboratory of Pressure Systems and Safety, Ministry of Education
来源
关键词
In-plane constraint; Out-of-plane constraint; Brittle fracture toughness; Equivalent plastic strain; Finite element; Steel;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the equivalent plastic strain εp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{p}$$\end{document} distributions ahead of crack tips for the experimental specimens with combined in-plane and out-of-plane constraints under brittle fracture condition in the literature were calculated by three-dimensional finite element. The constraint parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} based on the areas surrounded by εp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{p}$$\end{document} isolines ahead of crack tips has been comparatively analyzed with several constraint parameters (T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}-stress, A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document}, Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} and stress triaxiality h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}) based on the crack-tip stress fields, and the capability of parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} for characterizing in-plane and out-of-plane crack-tip constraint effects for brittle fracture has been identified. The results show that the parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} has a good correlation with brittle fracture toughness KJc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{Jc}$$\end{document} and Jc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{c}$$\end{document} of various specimens with different constraint levels, and it is a unified measure parameter of in-plane and out-of-plane constraint for brittle fracture. The unified correlation lines and formulae of the normalized brittle fracture toughness KJc/Kref\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{Jc}/K_{ref}$$\end{document} and JIc/Jref\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{Ic}/J_{ref}$$\end{document} with Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{A_p}$$\end{document} have been obtained for the steel, and they may be used to determine constraint-dependent or structurally relevant fracture toughness of specimens or cracked components with any constraint levels. The application methodology of the constraint parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} for structural integrity assessments needs to be further investigated by numerical calculations and experiments.
引用
收藏
页码:87 / 98
页数:11
相关论文
共 50 条
  • [31] THE EFFECTS OF IN-PLANE AND OUT-OF-PLANE DIMENSIONS OF A CURVED WIDE-PLATE ON CRACK-TIP CONSTRAINT FOR PIPELINE FRACTURE ASSESSMENT
    Lee, Hwee-Seung
    Huh, Nam-Su
    Kim, Ki-Seok
    ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2014, VOL 5, 2014,
  • [32] Anisotropic fracture modeling of sheet metals: From in-plane to out-of-plane
    Gu, Bin
    He, Ji
    Li, Shuhui
    Lin, Zhongqin
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 182 : 112 - 140
  • [33] Ductile fracture under in-plane biaxial tension and out-of-plane compression
    Spulak, N.
    Lowe, R. L.
    Seidt, J. D.
    Gilat, A.
    Park, C. K.
    Carney, K. S.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 202 : 234 - 242
  • [34] Three-dimensional analyses of in-plane and out-of-plane crack-tip constraint characterization for fracture specimens
    Mu, M. Y.
    Wang, G. Z.
    Tu, S. T.
    Xuan, F. Z.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2016, 39 (12) : 1461 - 1476
  • [35] In-plane, out-of-plane, and in-plane/out-of-plane interactional behavior of masonry-infilled steel MRFs with different frame components flexibilities and considering openings
    Farahani, Emadoddin Majdabadi
    Yekrangnia, Mohammad
    Liberatore, Laura
    JOURNAL OF BUILDING ENGINEERING, 2023, 74
  • [36] Sensitivity of in-Plane Strain Measurement to Calibration Parameter for out-of-Plane Specimen Rotations
    Yasmeen, F.
    Balcaen, R.
    Sutton, M. A.
    Debruyne, D.
    Rajan, S.
    Schreier, H. W.
    EXPERIMENTAL MECHANICS, 2018, 58 (07) : 1115 - 1132
  • [37] Quantitative investigation of brittle out-of-plane fracture in X70 pipeline steel
    Tankoua, Franck
    Crepin, Jerome
    Thibaux, Philippe
    Cooreman, Steven
    Gourgues-Lorenzon, Anne-Francoise
    20TH EUROPEAN CONFERENCE ON FRACTURE, 2014, 3 : 1149 - 1154
  • [38] Sensitivity of in-Plane Strain Measurement to Calibration Parameter for out-of-Plane Specimen Rotations
    F. Yasmeen
    R. Balcaen
    M.A. Sutton
    D. Debruyne
    S. Rajan
    H.W. Schreier
    Experimental Mechanics, 2018, 58 : 1115 - 1132
  • [39] Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens
    Mostafavi, M.
    Smith, D. J.
    Pavier, M. J.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2010, 33 (11) : 724 - 739
  • [40] Fracture toughness of structural elements: The influence of the in-and out-of-plane constraints on fracture toughness
    A. Neimitz
    Materials Science, 2006, 42 : 61 - 77