Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel

被引:0
|
作者
M. Y. Mu
G. Z. Wang
F. Z. Xuan
S. T. Tu
机构
[1] East China University of Science and Technology,Key Laboratory of Pressure Systems and Safety, Ministry of Education
来源
关键词
In-plane constraint; Out-of-plane constraint; Brittle fracture toughness; Equivalent plastic strain; Finite element; Steel;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the equivalent plastic strain εp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{p}$$\end{document} distributions ahead of crack tips for the experimental specimens with combined in-plane and out-of-plane constraints under brittle fracture condition in the literature were calculated by three-dimensional finite element. The constraint parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} based on the areas surrounded by εp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{p}$$\end{document} isolines ahead of crack tips has been comparatively analyzed with several constraint parameters (T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}-stress, A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document}, Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} and stress triaxiality h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}) based on the crack-tip stress fields, and the capability of parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} for characterizing in-plane and out-of-plane crack-tip constraint effects for brittle fracture has been identified. The results show that the parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} has a good correlation with brittle fracture toughness KJc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{Jc}$$\end{document} and Jc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{c}$$\end{document} of various specimens with different constraint levels, and it is a unified measure parameter of in-plane and out-of-plane constraint for brittle fracture. The unified correlation lines and formulae of the normalized brittle fracture toughness KJc/Kref\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{Jc}/K_{ref}$$\end{document} and JIc/Jref\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{Ic}/J_{ref}$$\end{document} with Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{A_p}$$\end{document} have been obtained for the steel, and they may be used to determine constraint-dependent or structurally relevant fracture toughness of specimens or cracked components with any constraint levels. The application methodology of the constraint parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} for structural integrity assessments needs to be further investigated by numerical calculations and experiments.
引用
收藏
页码:87 / 98
页数:11
相关论文
共 50 条
  • [21] In-plane and Out-of-plane Fracture Toughness of Physically Aged Polyesters as Assessed by the Essential Work of Fracture (EWF) Method
    T. Bárány
    F. Ronkay
    J. Karger-kocsis
    T. Czigány
    International Journal of Fracture, 2005, 135 : 251 - 265
  • [22] Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain
    Yang, J.
    Wang, G. Z.
    Xuan, F. Z.
    Tu, S. T.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2013, 36 (06) : 504 - 514
  • [23] FRACTURE TOUGHNESS EVALUATION IN C(T) SPECIMENS WITH REDUCED OUT-OF-PLANE CONSTRAINT
    Kulka, R. S.
    Sherry, A. H.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B, 2012, : 877 - 885
  • [24] Unifying the effects of in and out-of-plane constraint on the fracture of ductile materials
    Tonge, S. M.
    Simpson, C. A.
    Reinhard, C.
    Connolley, T.
    Sherry, A. H.
    Marrow, T. J.
    Mostafavi, M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 141
  • [25] Comparison of energy dissipation in the out-of-plane and in-plane fracture of paper
    Tanaka, A
    Kettunen, H
    Niskanen, K
    Keitaanniemi, K
    JOURNAL OF PULP AND PAPER SCIENCE, 2000, 26 (11): : 385 - 390
  • [26] Experimental and numerical analysis of in-plane and out-of-plane crack tip constraint characterization by secondary fracture parameters
    Hebel, Jochen
    Hohe, Joerg
    Friedmann, Valerie
    Siegele, Dieter
    INTERNATIONAL JOURNAL OF FRACTURE, 2007, 146 (03) : 173 - 188
  • [27] Experimental and numerical analysis of in-plane and out-of-plane crack tip constraint characterization by secondary fracture parameters
    Jochen Hebel
    Jörg Hohe
    Valérie Friedmann
    Dieter Siegele
    International Journal of Fracture, 2007, 146 : 173 - 188
  • [28] Unified characterization of in-plane and out-of-plane creep constraint based on crack-tip equivalent creep strain
    Ma, H. S.
    Wang, G. Z.
    Xuan, F. Z.
    Tu, S. T.
    ENGINEERING FRACTURE MECHANICS, 2015, 142 : 1 - 20
  • [29] In-plane and out-of-plane crack-tip constraint effects under biaxial nonlinear deformation
    Shlyannikov, V. N.
    Boychenko, N. V.
    Tartygasheva, A. M.
    ENGINEERING FRACTURE MECHANICS, 2011, 78 (08) : 1771 - 1783
  • [30] Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens
    Li Yizhe
    Gong Baoming
    Liu Xiuguo
    Wang Dongpo
    Deng Caiyan
    ACTA METALLURGICA SINICA, 2018, 54 (12) : 1785 - 1791