Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel

被引:0
|
作者
M. Y. Mu
G. Z. Wang
F. Z. Xuan
S. T. Tu
机构
[1] East China University of Science and Technology,Key Laboratory of Pressure Systems and Safety, Ministry of Education
来源
关键词
In-plane constraint; Out-of-plane constraint; Brittle fracture toughness; Equivalent plastic strain; Finite element; Steel;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the equivalent plastic strain εp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{p}$$\end{document} distributions ahead of crack tips for the experimental specimens with combined in-plane and out-of-plane constraints under brittle fracture condition in the literature were calculated by three-dimensional finite element. The constraint parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} based on the areas surrounded by εp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{p}$$\end{document} isolines ahead of crack tips has been comparatively analyzed with several constraint parameters (T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}-stress, A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document}, Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} and stress triaxiality h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}) based on the crack-tip stress fields, and the capability of parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} for characterizing in-plane and out-of-plane crack-tip constraint effects for brittle fracture has been identified. The results show that the parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} has a good correlation with brittle fracture toughness KJc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{Jc}$$\end{document} and Jc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{c}$$\end{document} of various specimens with different constraint levels, and it is a unified measure parameter of in-plane and out-of-plane constraint for brittle fracture. The unified correlation lines and formulae of the normalized brittle fracture toughness KJc/Kref\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{Jc}/K_{ref}$$\end{document} and JIc/Jref\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{Ic}/J_{ref}$$\end{document} with Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{A_p}$$\end{document} have been obtained for the steel, and they may be used to determine constraint-dependent or structurally relevant fracture toughness of specimens or cracked components with any constraint levels. The application methodology of the constraint parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} for structural integrity assessments needs to be further investigated by numerical calculations and experiments.
引用
收藏
页码:87 / 98
页数:11
相关论文
共 50 条
  • [41] Fracture toughness of structural elements: The influence of the in- and out-of-plane constraints on fracture toughness
    Neimitz, A.
    MATERIALS SCIENCE, 2006, 42 (01) : 61 - 77
  • [42] In-plane and out-of-plane constraint effects on creep crack growth rate in Cr-Mo-V steel for wide range of C*
    Zhang, J. W.
    Wang, G. Z.
    Xuan, F. Z.
    Tu, S. T.
    MATERIALS AT HIGH TEMPERATURES, 2015, 32 (05) : 512 - 523
  • [43] In-plane and out-of-plane displacement measurement by ultrasonic speckle correlation method (USCM)
    H.-M. Zhu
    Y.-Y. Wu
    W.-H. Zheng
    Z.-W. Huang
    Archive of Applied Mechanics, 2006, 75 : 521 - 526
  • [44] Fracture toughness correction due to the in- and out-of-plane constraints
    Neimitz, Andrzej
    Lipiec, Sebastian
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 112
  • [45] In-plane and out-of-plane displacement measurement by ultrasonic speckle correlation method (USCM)
    Zhu, HM
    Wu, YY
    Zheng, WH
    Huang, ZW
    ARCHIVE OF APPLIED MECHANICS, 2006, 75 (8-9) : 521 - 526
  • [46] IN-PLANE AND OUT-OF-PLANE BENDING TESTS ON CARBON STEEL PIPE BENDS.
    Brouard, D.
    Tremblais, A.
    Vrillon, B.
    Transactions of the International Conference on Structural Mechanics in Reactor Technology, 1979, F.
  • [47] Out-of-plane and in-plane actuation effects on atomic-scale friction
    Fajardo, O. Y.
    Gnecco, E.
    Mazo, J. J.
    PHYSICAL REVIEW B, 2014, 89 (07)
  • [48] Corrugated graphene: effects of in-plane and tilted out-of-plane magnetic fields
    B. S. Kandemir
    The European Physical Journal B, 2010, 78 : 393 - 397
  • [49] Corrugated graphene: effects of in-plane and tilted out-of-plane magnetic fields
    Kandemir, B. S.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 78 (03): : 393 - 397
  • [50] Ductile fracture properties of 16MND5 bainitic forging steel under different in-plane and out-of-plane constraint conditions: Experiments and predictions
    Liu, Zheng
    Wang, Xin
    Miller, Ronald E.
    Hu, Jiaqi
    Chen, Xu
    ENGINEERING FRACTURE MECHANICS, 2021, 241