Lucas sequences and quadratic orders

被引:0
|
作者
Franz Halter-Koch
机构
[1] Karl-Franzens-Universität Graz,Institut für Mathematik und Wissenschaftliches Rechnen
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Prime Power; Recursion Formula; Class Number; Period Length; Fundamental Unit;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Lucas sequences (Un)n ≥ 0 defined by U0 = 0, U1 = 1, and Un =  PUn–1 – QUn–2 for non-zero integral parameters P, Q such that Δ = P2 – 4Q is not a square. We use the arithmetic of the quadratic order with discriminant Δ to investigate the zeros and the period length of the sequence (Un)n ≥ 0 modulo a positive integer d coprime to Q. For a prime p not dividing Q, we give precise formulas for p-powers, we determine the p-adic value of Un, and we connect the results with class number relations for quadratic orders.
引用
收藏
页码:417 / 430
页数:13
相关论文
共 50 条
  • [21] Notes on the (s, t)-Lucas and Lucas Matrix Sequences
    Civciv, Haci
    Turkmen, Ramazan
    ARS COMBINATORIA, 2008, 89 : 271 - 285
  • [22] QUADRATIC SEMI-ORDERS AND QUADRATIC FORMS
    PRESTEL, A
    MATHEMATISCHE ZEITSCHRIFT, 1973, 133 (04) : 319 - 342
  • [23] COINCIDENCES IN GENERALIZED LUCAS SEQUENCES
    Bravo, Eric F.
    Bravo, Jhon J.
    Luca, Florian
    FIBONACCI QUARTERLY, 2014, 52 (04): : 296 - 306
  • [24] Integers represented by Lucas sequences
    Hajdu, Lajos
    Tijdeman, Rob
    RAMANUJAN JOURNAL, 2025, 66 (04):
  • [25] PSEUDOPRIMES WITH RESPECT TO LUCAS SEQUENCES
    ROTKIEWICZ, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (09): : 793 - 797
  • [26] Decomposition of terms in Lucas sequences
    Boudaoud, Abdelmadjid
    JOURNAL OF LOGIC AND ANALYSIS, 2009, 1
  • [27] Oscillatory Nonautonomous Lucas Sequences
    Ferreira, Jose M.
    Pinelas, Sandra
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
  • [28] Primefree shifted Lucas sequences
    Jones, Lenny
    ACTA ARITHMETICA, 2015, 170 (03) : 287 - 298
  • [29] The square terms in Lucas sequences
    Ribenboim, P
    McDaniel, WL
    JOURNAL OF NUMBER THEORY, 1996, 58 (01) : 104 - 123
  • [30] ON PERFECT POWERS IN LUCAS SEQUENCES
    Bugeaud, Yann
    Luca, Florian
    Mignotte, Maurice
    Siksek, Samir
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (03) : 309 - 332