Lucas sequences and quadratic orders

被引:0
|
作者
Franz Halter-Koch
机构
[1] Karl-Franzens-Universität Graz,Institut für Mathematik und Wissenschaftliches Rechnen
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Prime Power; Recursion Formula; Class Number; Period Length; Fundamental Unit;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Lucas sequences (Un)n ≥ 0 defined by U0 = 0, U1 = 1, and Un =  PUn–1 – QUn–2 for non-zero integral parameters P, Q such that Δ = P2 – 4Q is not a square. We use the arithmetic of the quadratic order with discriminant Δ to investigate the zeros and the period length of the sequence (Un)n ≥ 0 modulo a positive integer d coprime to Q. For a prime p not dividing Q, we give precise formulas for p-powers, we determine the p-adic value of Un, and we connect the results with class number relations for quadratic orders.
引用
收藏
页码:417 / 430
页数:13
相关论文
共 50 条
  • [41] Binomial coefficients and Lucas sequences
    Flammenkamp, A
    Luca, F
    JOURNAL OF NUMBER THEORY, 2002, 93 (02) : 246 - 284
  • [42] PERIODIC FIBONACCI AND LUCAS SEQUENCES
    LEWIN, M
    FIBONACCI QUARTERLY, 1991, 29 (04): : 310 - 315
  • [43] Practical numbers in Lucas sequences
    Sanna, Carlo
    QUAESTIONES MATHEMATICAE, 2019, 42 (07) : 977 - 983
  • [44] SOME GENERALIZED LUCAS SEQUENCES
    CLARKE, JH
    SHANNON, AG
    FIBONACCI QUARTERLY, 1985, 23 (02): : 120 - 125
  • [45] REPRESENTATIONS OF RECIPROCALS OF LUCAS SEQUENCES
    Hashim, H. R.
    Tengely, S. Z.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (02) : 865 - 872
  • [46] On harmonic numbers and Lucas sequences
    Sun, Zhi-Wei
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 25 - 41
  • [47] INVERSE RELATIONS FOR LUCAS SEQUENCES
    Tuenter, Hans J. H.
    FIBONACCI QUARTERLY, 2021, 59 (03): : 246 - 253
  • [48] Supercongruences involving Lucas sequences
    Sun, Zhi-Wei
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (03): : 577 - 606
  • [49] ON THE IMBEDDINGS OF IMAGINARY QUADRATIC ORDERS IN DEFINITE QUATERNION ORDERS
    BRZEZINSKI, J
    EICHLER, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 426 : 91 - 105
  • [50] ON CONDUCTOR IDEALS OF QUADRATIC ORDERS
    Almas, S.
    Rehman, S. U.
    Younus, S.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (02): : 243 - 252