Lucas sequences and quadratic orders

被引:0
|
作者
Franz Halter-Koch
机构
[1] Karl-Franzens-Universität Graz,Institut für Mathematik und Wissenschaftliches Rechnen
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Prime Power; Recursion Formula; Class Number; Period Length; Fundamental Unit;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Lucas sequences (Un)n ≥ 0 defined by U0 = 0, U1 = 1, and Un =  PUn–1 – QUn–2 for non-zero integral parameters P, Q such that Δ = P2 – 4Q is not a square. We use the arithmetic of the quadratic order with discriminant Δ to investigate the zeros and the period length of the sequence (Un)n ≥ 0 modulo a positive integer d coprime to Q. For a prime p not dividing Q, we give precise formulas for p-powers, we determine the p-adic value of Un, and we connect the results with class number relations for quadratic orders.
引用
收藏
页码:417 / 430
页数:13
相关论文
共 50 条
  • [31] A NOTE ON A CLASS OF LUCAS SEQUENCES
    FILIPPONI, P
    FIBONACCI QUARTERLY, 1991, 29 (03): : 256 - 263
  • [32] A method for computing Lucas sequences
    Wang, CT
    Chang, CC
    Lin, CH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (11-12) : 187 - 196
  • [33] Prime divisors of Lucas sequences
    Moree, P
    Stevenhagen, P
    ACTA ARITHMETICA, 1997, 82 (04) : 403 - 410
  • [34] Sum Relations for Lucas Sequences
    He, Yuan
    Zhang, Wenpeng
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (04)
  • [35] On the rank of appearance of Lucas sequences
    Müller, S
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 8, 1999, : 259 - 275
  • [36] Supercongruences involving Lucas sequences
    Zhi-Wei Sun
    Monatshefte für Mathematik, 2021, 196 : 577 - 606
  • [37] On k-Lucas Sequences
    Ho, C. K.
    Sia, Jye-Ying
    Chong, Chin-Yoon
    INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014), 2014, 1635 : 425 - 429
  • [38] On a divisibility relation for Lucas sequences
    Bilu, Yuri F.
    Komatsu, Takao
    Luca, Florian
    Pizarro-Madariaga, Amalia v
    Stanica, Pantelimon
    JOURNAL OF NUMBER THEORY, 2016, 163 : 1 - 18
  • [39] DIOPHANTINE REPRESENTATION OF LUCAS SEQUENCES
    MCDANIEL, WL
    FIBONACCI QUARTERLY, 1995, 33 (01): : 59 - 63
  • [40] CONGRUENCES CONCERNING LUCAS SEQUENCES
    Sun, Zhi-Hong
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) : 793 - 815