The square terms in Lucas sequences

被引:63
|
作者
Ribenboim, P
McDaniel, WL
机构
[1] QUEENS UNIV,DEPT MATH,KINGSTON,ON K7L 3N6,CANADA
[2] UNIV MISSOURI,DEPT MATH,ST LOUIS,MO 63121
关键词
D O I
10.1006/jnth.1996.0068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {U-n(P,Q)} and {V-n(P,Q)} denote the Lucas sequence and companion Lucas sequence, respectively, with parameters P and Q. For all odd relatively prime values of P and Q such that D = P-2 - 4Q is positive. we determine all indices n such that U-n(P,Q), 2U(n)(P,Q), V-n(P,Q) or 2 V-n(P,Q) is a square. The condition D > 0 assures that the result holds for all such sequences whose terms are positive. (C) 1996 Academic Press, Inc.
引用
收藏
页码:104 / 123
页数:20
相关论文
共 50 条
  • [1] THE SQUARE TERMS IN GENERALIZED LUCAS SEQUENCES
    Siar, Zafer
    Keskin, Refik
    MATHEMATIKA, 2014, 60 (01) : 85 - 100
  • [2] The square terms in Lucas sequences (vol 58, pg 104, 1996)
    Ribenboim, P
    McDaniel, WL
    JOURNAL OF NUMBER THEORY, 1996, 61 (02) : 420 - 420
  • [3] Decomposition of terms in Lucas sequences
    Boudaoud, Abdelmadjid
    JOURNAL OF LOGIC AND ANALYSIS, 2009, 1
  • [4] The Terms in Lucas Sequences Divisible by Their Indices
    Smyth, Chris
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (02)
  • [5] On square classes in generalized Lucas sequences
    Siar, Zafer
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) : 661 - 672
  • [6] Lucas sequences whose nth term is a square or an almost square
    Bremner, A.
    Tzanakis, N.
    ACTA ARITHMETICA, 2007, 126 (03) : 261 - 280
  • [7] Equations with Solution in Terms of Fibonacci and Lucas Sequences
    Andreescu, Titu
    Andrica, Dorin.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 5 - 12
  • [8] Diophantine equations with products of consecutive terms in Lucas sequences
    Luca, F
    Shorey, TN
    JOURNAL OF NUMBER THEORY, 2005, 114 (02) : 298 - 311
  • [9] Terms of Lucas sequences having a large smooth divisor
    Balaji, Nikhil
    Luca, Florian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01): : 225 - 231
  • [10] Perfect powers from products of terms in Lucas sequences
    Bugeaud, Yann
    Luca, Florian
    Mignotte, Maurice
    Siksek, Samir
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 611 : 109 - 129