Diophantine equations with products of consecutive terms in Lucas sequences

被引:22
|
作者
Luca, F
Shorey, TN
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Lucas sequences; primitive divisors; arithmetic progressions;
D O I
10.1016/j.jnt.2004.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that if (u(n))(n) >= 1 is a Lucas sequence, then the Diophantine equation u(n) (.) u(n+1) (.....) u(n+k) = y(m) in integers n >= 1, k >=, 4, m >= 2 and y with vertical bar y vertical bar > 1 has only finitely many solutions. We also determine all such solutions when (u(n))(n >= 1) is the sequence of Fibonacci numbers and when u(n) = (x(n) - 1)/(x - 1) for all n >= 1 with some integer x > 1. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:298 / 311
页数:14
相关论文
共 50 条
  • [1] Diophantine equations with products of consecutive terms in Lucas sequences II
    Luca, Florian
    Shorey, T. N.
    ACTA ARITHMETICA, 2008, 133 (01) : 53 - 71
  • [2] On the exponential Diophantine equation related to powers of two consecutive terms of Lucas sequences
    Ddamulira, Mahadi
    Luca, Florian
    RAMANUJAN JOURNAL, 2021, 56 (02): : 651 - 684
  • [3] On the exponential Diophantine equation related to powers of two consecutive terms of Lucas sequences
    Mahadi Ddamulira
    Florian Luca
    The Ramanujan Journal, 2021, 56 : 651 - 684
  • [4] On Diophantine equations involving Lucas sequences
    Trojovsky, Pavel
    OPEN MATHEMATICS, 2019, 17 : 942 - 946
  • [5] The terms Cxh (h ≥ 3) in Lucas sequences:: an algorithm and applications to diophantine equations
    Ribenboim, P
    ACTA ARITHMETICA, 2003, 106 (02) : 105 - 114
  • [6] Squares in Lucas sequences and¶some Diophantine equations
    Takaaki Kagawa
    Nobuhiro Terai
    manuscripta mathematica, 1998, 96 : 195 - 202
  • [7] ON 2 DIOPHANTINE EQUATIONS CONCERNING LUCAS SEQUENCES
    JOO, I
    PHONG, BM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1988, 35 (3-4): : 301 - 307
  • [8] Squares in Lucas sequences and some Diophantine equations
    Kagawa, T
    Terai, N
    MANUSCRIPTA MATHEMATICA, 1998, 96 (02) : 195 - 202
  • [9] Equations with Solution in Terms of Fibonacci and Lucas Sequences
    Andreescu, Titu
    Andrica, Dorin.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 5 - 12
  • [10] On the Shorey-Tijdeman Diophantine equation involving terms of Lucas sequences
    Ddamulira, Mahadi
    Luca, Florian
    Tichy, Robert
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (02): : 314 - 321